def _deconv(self, x, filter_size, out_channel, stride, pad="SAME", name="conv"): b, h, w, in_channel = x.get_shape().as_list() x = utils._deconv(x, filter_size, out_channel, stride, pad, name) f = 2 * (h / stride) * ( w / stride) * in_channel * out_channel * filter_size * filter_size w = in_channel * out_channel * filter_size * filter_size scope_name = tf.get_variable_scope().name + "/" + name self._add_flops_weights(scope_name, f, w) print('%s: %s' % (name, str(x.get_shape().as_list()))) return x