def train(self):
        # noise for test.
        sample_batch = self.loader.get_batch()
        print(sample_batch)
        self.z_test = sample_batch['encods']
        print("0self.z_test")
        print(self.z_test)
        print("1self.z_test")
        if self.use_cuda:
            self.z_test = self.z_test.cuda()
        self.z_test = Variable(self.z_test, volatile=False)

        self.z_test.data.resize_(self.loader.batchsize, self.nz)

        for step in range(2, self.max_resl + 1 + 5):
            for iter in tqdm(
                    range(0, (self.trns_tick * 2 + self.stab_tick * 2) *
                          self.TICK, self.loader.batchsize)):
                sample_batch = self.loader.get_batch()

                self.globalIter = self.globalIter + 1
                self.stack = self.stack + self.loader.batchsize
                if self.stack > ceil(len(self.loader.dataset)):
                    self.epoch = self.epoch + 1
                    self.stack = int(self.stack %
                                     (ceil(len(self.loader.dataset))))

                # reslolution scheduler.
                self.resl_scheduler()

                # zero gradients.
                self.G.zero_grad()
                self.D.zero_grad()

                # update discriminator.
                self.x.data = self.feed_interpolated_input(
                    sample_batch['image'])
                if self.flag_add_noise:
                    self.x = self.add_noise(self.x)
                self.z = sample_batch['encods']
                print("2self.z")
                print(self.z_test)
                print("3self.z")
                if self.use_cuda:
                    self.z = self.z.cuda()
                self.z = Variable(self.z, volatile=False)
                self.z.data.resize_(self.loader.batchsize, self.nz)
                self.x_tilde = self.G(self.z.float())

                self.fx = self.D(self.x.float())
                self.fx_tilde = self.D(self.x_tilde.detach())
                loss_d = self.mse(self.fx, self.real_label) + self.mse(
                    self.fx_tilde, self.fake_label)

                loss_d.backward()
                self.opt_d.step()

                # update generator.
                fx_tilde = self.D(self.x_tilde)
                loss_g = self.mse(fx_tilde, self.real_label.detach())
                loss_g.backward()
                self.opt_g.step()

                # logging.
                log_msg = ' [E:{0}][T:{1}][{2:6}/{3:6}]  errD: {4:.4f} | errG: {5:.4f} | [lr:{11:.5f}][cur:{6:.3f}][resl:{7:4}][{8}][{9:.1f}%][{10:.1f}%]'.format(
                    self.epoch, self.globalTick, self.stack,
                    len(self.loader.dataset), loss_d.data[0], loss_g.data[0],
                    self.resl, int(pow(2, floor(self.resl))), self.phase,
                    self.complete['gen'], self.complete['dis'], self.lr)
                tqdm.write(log_msg)

                # save model.
                self.snapshot('repo_enco/model')

                # save image grid.
                if self.globalIter % self.config.save_img_every == 0:
                    x_test = self.G(self.z_test.float())
                    os.system('mkdir -p repo_enco/save/grid')
                    utils.save_image_grid(
                        x_test.data,
                        'repo_enco/save/grid/{}_{}_G{}_D{}.jpg'.format(
                            int(self.globalIter / self.config.save_img_every),
                            self.phase, self.complete['gen'],
                            self.complete['dis']))
                    os.system('mkdir -p repo_enco/save/resl_{}'.format(
                        int(floor(self.resl))))
                    utils.save_image_single(
                        x_test.data,
                        'repo_enco/save/resl_{}/{}_{}_G{}_D{}.jpg'.format(
                            int(floor(self.resl)),
                            int(self.globalIter / self.config.save_img_every),
                            self.phase, self.complete['gen'],
                            self.complete['dis']))

                # tensorboard visualization.
                if self.use_tb:
                    x_test = self.G(self.z_test)
                    self.tb.add_scalar('data/loss_g', loss_g.data[0],
                                       self.globalIter)
                    self.tb.add_scalar('data/loss_d', loss_d.data[0],
                                       self.globalIter)
                    self.tb.add_scalar('tick/lr', self.lr, self.globalIter)
                    self.tb.add_scalar('tick/cur_resl',
                                       int(pow(2, floor(self.resl))),
                                       self.globalIter)
                    self.tb.add_image_grid(
                        'grid/x_test', 4,
                        utils.adjust_dyn_range(x_test.data.float(), [-1, 1],
                                               [0, 1]), self.globalIter)
                    self.tb.add_image_grid(
                        'grid/x_tilde', 4,
                        utils.adjust_dyn_range(self.x_tilde.data.float(),
                                               [-1, 1], [0, 1]),
                        self.globalIter)
                    self.tb.add_image_grid(
                        'grid/x_intp', 4,
                        utils.adjust_dyn_range(self.x.data.float(), [-1, 1],
                                               [0, 1]), self.globalIter)
Exemplo n.º 2
0
    def train(self):
        # noise for test.
        self.z_test = torch.FloatTensor(self.loader.batchsize, self.nz)
        if self.use_cuda:
            self.z_test = self.z_test.cuda()
        self.z_test = Variable(self.z_test, volatile=True)
        self.z_test.data.resize_(self.loader.batchsize, self.nz).normal_(0.0, 1.0)
        if self.use_captions:
            test_caps_set = False
            self.caps_test = torch.FloatTensor(self.loader.batchsize, self.ncap)
            if self.use_cuda:
                self.caps_test = self.caps_test.cuda()
            self.caps_test = Variable(self.caps_test, volatile=True)
        
        
        for step in range(2, self.max_resl+1+5):
            for iter in tqdm(range(0,(self.trns_tick*2+self.stab_tick*2)*self.TICK, self.loader.batchsize)):
                self.globalIter = self.globalIter+1
                self.stack = self.stack + self.loader.batchsize
                if self.stack > ceil(len(self.loader.dataset)):
                    self.epoch = self.epoch + 1
                    self.stack = int(self.stack%(ceil(len(self.loader.dataset))))

                # reslolution scheduler.
                self.resl_scheduler()
                
                # zero gradients.
                self.G.zero_grad()
                self.D.zero_grad()

                # update discriminator.
                if self.use_captions:
                    batch_imgs, batch_caps = self.loader.get_batch()
                    if self.use_cuda:
                        batch_caps = batch_caps.cuda()
                    self.caps.data = batch_caps
                    if not test_caps_set:
                        self.caps_test.data = batch_caps
                        test_caps_set = True
                else:
                    batch_imgs, _ = self.loader.get_batch()
                self.x.data = self.feed_interpolated_input(batch_imgs)
                if self.flag_add_noise:
                    self.x = self.add_noise(self.x)
                self.z.data.resize_(self.loader.batchsize, self.nz).normal_(0.0, 1.0)
                if not self.use_captions:
                    self.x_tilde = self.G(self.z)
                else:
                    self.x_tilde = self.G(self.z, self.caps)
                if not self.use_captions:
                    self.fx = self.D(self.x)
                    self.fx_tilde = self.D(self.x_tilde.detach())
                else:
                    self.fx = self.D(self.x, self.caps)
                    self.fx_tilde = self.D(self.x_tilde.detach(), self.caps)

                if self.gan_type == 'lsgan':
                    loss_d = self.mse(self.fx, self.real_label) + self.mse(self.fx_tilde, self.fake_label)
                elif self.gan_type == 'wgan-gp':
                    D_real_loss = -torch.mean(self.fx_tilde)
                    D_fake_loss = torch.mean(self.x_tilde)

                    if self.use_cuda:
                        alpha = torch.rand(self.x.size().cuda())
                    else:
                        alpha = torch.rand(self.x.size())

                    x_hat = Variable(alpha * self.x.data + (1- alpha) * self.G.data, requires_grad=True)

                    pred_hat = self.D(x_hat)

                    if self.use_cuda:
                        gradients = grad(outputs=pred_hat, inputs=x_hat, grad_outputs=torch.ones(pred_hat.size()).cuda(),
                                     create_graph=True, retain_graph=True, only_inputs=True)[0]
                    else:
                        gradients = grad(outputs=pred_hat, inputs=x_hat, grad_outputs=torch.ones(pred_hat.size()),
                                         create_graph=True, retain_graph=True, only_inputs=True)[0]

                    gradient_penalty = self.lambda * ((gradients.view(gradients.size()[0], -1).norm(2, 1) - 1) ** 2).mean()

                    loss_d = D_real_loss + D_fake_loss + gradient_penalty

                loss_d.backward()
                self.opt_d.step()

                # update generator.
                if not self.use_captions:
                    fx_tilde = self.D(self.x_tilde)
                else:
                    fx_tilde = self.D(self.x_tilde, self.caps)

                if self.gan_type == 'lsgan':
                    loss_g = self.mse(fx_tilde, self.real_label.detach())
                elif self.gan_type == 'wgan-gp':
                    loss_g = -torch.mean(fx_tilde)

                loss_g.backward()
                self.opt_g.step()

                # logging.
                log_msg = ' [E:{0}][T:{1}][{2:6}/{3:6}]  errD: {4:.4f} | errG: {5:.4f} | [lr:{11:.5f}][cur:{6:.3f}][resl:{7:4}][{8}][{9:.1f}%][{10:.1f}%]'.format(self.epoch, self.globalTick, self.stack, len(self.loader.dataset), loss_d.data[0], loss_g.data[0], self.resl, int(pow(2,floor(self.resl))), self.phase, self.complete['gen'], self.complete['dis'], self.lr)
                tqdm.write(log_msg)

                # save model.
                self.snapshot('repo/model')

                # save image grid.
                if self.globalIter%self.config.save_img_every == 0:
                    if not self.use_captions:
                        x_test = self.G(self.z_test)
                    else:
                        x_test = self.G(self.z_test, self.caps_test)
                    os.system('mkdir -p repo/save/grid')
                    utils.save_image_grid(x_test.data, 'repo/save/grid/{}_{}_G{}_D{}.jpg'.format(int(self.globalIter/self.config.save_img_every), self.phase, self.complete['gen'], self.complete['dis']))
                    os.system('mkdir -p repo/save/resl_{}'.format(int(floor(self.resl))))
                    utils.save_image_single(x_test.data, 'repo/save/resl_{}/{}_{}_G{}_D{}.jpg'.format(int(floor(self.resl)),int(self.globalIter/self.config.save_img_every), self.phase, self.complete['gen'], self.complete['dis']))


                # tensorboard visualization.
                if self.use_tb:
                    if not self.use_captions:
                        x_test = self.G(self.z_test)
                    else:
                        x_test = self.G(self.z_test, self.caps_test)
                    self.tb.add_scalar('data/loss_g', loss_g.data[0], self.globalIter)
                    self.tb.add_scalar('data/loss_d', loss_d.data[0], self.globalIter)
                    self.tb.add_scalar('tick/lr', self.lr, self.globalIter)
                    self.tb.add_scalar('tick/cur_resl', int(pow(2,floor(self.resl))), self.globalIter)
                    self.tb.add_image_grid('grid/x_test', 4, utils.adjust_dyn_range(x_test.data.float(), [-1,1], [0,1]), self.globalIter)
                    self.tb.add_image_grid('grid/x_tilde', 4, utils.adjust_dyn_range(self.x_tilde.data.float(), [-1,1], [0,1]), self.globalIter)
                    self.tb.add_image_grid('grid/x_intp', 4, utils.adjust_dyn_range(self.x.data.float(), [-1,1], [0,1]), self.globalIter)
Exemplo n.º 3
0
    def train(self):
        # noise for test
        self.z_test = torch.FloatTensor(self.loader.batchsize, self.nz)
        if self.use_cuda:
            self.z_test = self.z_test.cuda()
        self.z_test = Variable(self.z_test, volatile=True)
        self.z_test.data.resize_(self.loader.batchsize, self.nz).normal_(0.0, 1.0)

        for step in range(0, self.max_resl + 1 + 5):
            for iter in tqdm(range(0, (self.trns_tick * 2 + self.stab_tick * 2) * self.TICK, self.loader.batchsize)):
                self.global_iter = self.global_iter + 1
                self.stack = self.stack + self.loader.batchsize
                if self.stack > ceil(len(self.loader.dataset)):
                    self.epoch = self.epoch + 1
                    self.stack = int(self.stack % (ceil(len(self.loader.dataset))))

                # Resolution scheduler
                self.resl_scheduler()

                # Zero the gradients
                self.G.zero_grad()
                self.D.zero_grad()

                # Update discriminator
                self.x.data = self.feed_interpolated_input(self.loader.get_batch())
                if self.flag_add_noise:
                    self.x = self.add_noise(self.x)
                self.z.data.resize_(self.loader.batchsize, self.nz).normal_(0.0, 1.0)
                self.x_tilde = self.G(self.z)

                self.fx = self.D(self.x)
                self.fx_tilde = self.D(self.x_tilde.detach())
                real_loss = self.criterion(torch.squeeze(self.fx), self.real_label)
                fake_loss = self.criterion(torch.squeeze(self.fx_tilde), self.fake_label)
                loss_d = real_loss + fake_loss

                # Compute gradients and apply update to parameters
                loss_d.backward()
                self.opt_d.step()

                # Update generator
                fx_tilde = self.D(self.x_tilde)
                loss_g = self.criterion(torch.squeeze(fx_tilde), self.real_label.detach())
                
                # Compute gradients and apply update to parameters
                loss_g.backward()
                self.opt_g.step()

                # Log information
                log_msg = ' [epoch:{0}][T:{1}][{2:6}/{3:6}]  errD: {4:.4f} | errG: {5:.4f} | [lr:{11:.5f}][cur:{6:.3f}][resl:{7:4}][{8}][{9:.1f}%][{10:.1f}%]'.format(
                    self.epoch,
                    self.global_tick,
                    self.stack,
                    len(self.loader.dataset),
                    loss_d.data[0],
                    loss_g.data[0],
                    self.resl,
                    int(pow(2, floor(self.resl))),
                    self.phase,
                    self.complete['gen'],
                    self.complete['dis'],
                    self.lr)
                tqdm.write(log_msg)

                # Save the model
                self.snapshot('./repo/model')

                # Save the image grid
                if self.global_iter % self.config.save_img_every == 0:
                    x_test = self.G(self.z_test)
                    os.system('mkdir -p repo/save/grid')
                    utils.save_image_grid(x_test.data, 'repo/save/grid/{}_{}_G{}_D{}.jpg'.format(int(self.global_iter / self.config.save_img_every), self.phase, self.complete['gen'], self.complete['dis']))
                    os.system('mkdir -p repo/save/resl_{}'.format(int(floor(self.resl))))
                    utils.save_image_single(x_test.data, 'repo/save/resl_{}/{}_{}_G{}_D{}.jpg'.format(int(floor(self.resl)), int(self.global_iter / self.config.save_img_every), self.phase, self.complete['gen'], self.complete['dis']))

                # Tensorboard visualization
                if self.use_tb:
                    x_test = self.G(self.z_test)
                    self.tb.add_scalar('data/loss_g', loss_g.data[0], self.global_iter)
                    self.tb.add_scalar('data/loss_d', loss_d.data[0], self.global_iter)
                    self.tb.add_scalar('tick/lr', self.lr, self.global_iter)
                    self.tb.add_scalar('tick/cur_resl', int(pow(2,floor(self.resl))), self.global_iter)
                    self.tb.add_image_grid('grid/x_test', 4, utils.adjust_dyn_range(x_test.data.float(), [-1, 1], [0, 1]), self.global_iter)
                    self.tb.add_image_grid('grid/x_tilde', 4, utils.adjust_dyn_range(self.x_tilde.data.float(), [-1, 1], [0, 1]), self.global_iter)
                    self.tb.add_image_grid('grid/x_intp', 4, utils.adjust_dyn_range(self.x.data.float(), [-1, 1], [0, 1]), self.global_iter)
Exemplo n.º 4
0
    def train(self):
        # noise for test.
        self.z_test = torch.FloatTensor(self.loader.batch_size, self.nz)
        print(self.z_test.size())
        if self.use_cuda:
            self.z_test = self.z_test.cuda()
        self.z_test = Variable(self.z_test, volatile=True)
        self.z_test.data.resize_(self.loader.batch_size,
                                 self.nz).normal_(0.0, 1.0)

        for step in range(2, self.max_resl + 1 + 5):
            for iter in tqdm(
                    range(0, (self.trns_tick * 2 + self.stab_tick * 2) *
                          self.TICK, self.loader.batch_size)):
                self.globalIter = self.globalIter + 1
                self.stack = self.stack + self.loader.batch_size
                if self.stack > ceil(len(self.loader.dataset)):
                    self.epoch = self.epoch + 1
                    self.stack = int(self.stack %
                                     (ceil(len(self.loader.dataset))))

                # reslolution scheduler.
                self.resl_scheduler()

                # zero gradients.
                self.G.zero_grad()
                self.D.zero_grad()

                # update discriminator.
                self.x.data = self.feed_interpolated_input(
                    self.loader.get_batch())
                if self.flag_add_noise:
                    self.x = self.add_noise(self.x)
                self.z.data.resize_(self.loader.batch_size,
                                    self.nz).normal_(0.0, 1.0)
                self.x_tilde = self.G(self.z)
                self.fx = self.D(self.x)
                self.fx_tilde = self.D(self.x_tilde.detach())
                loss_d = self.mse(self.fx.squeeze(),
                                  self.real_label) + self.mse(
                                      self.fx_tilde, self.fake_label)
                loss_d.backward()
                self.opt_d.step()

                # update generator.
                fx_tilde = self.D(self.x_tilde)
                identity_loss = 0
                for image, latent in self.identity_loader:
                    image = Variable(image.type(torch.Tensor))
                    latent = Variable(latent)
                    gen_image = self.G(latent)
                    identity_loss = self.l1(gen_image, image) * 0.5
                    break

                loss_g = self.mse(fx_tilde.squeeze(),
                                  self.real_label.detach()) + identity_loss
                loss_g.backward()
                self.opt_g.step()

                # logging.
                log_msg = ' [E:{0}][T:{1}][{2:6}/{3:6}]  errD: {4:.4f} | errG: {5:.4f} | [lr:{11:.5f}][cur:{6:.3f}][resl:{7:4}][{8}][{9:.1f}%][{10:.1f}%]'.format(
                    self.epoch, self.globalTick, self.stack,
                    len(self.loader.dataset), loss_d.item(), loss_g.item(),
                    self.resl, int(pow(2, floor(self.resl))), self.phase,
                    self.complete['gen'], self.complete['dis'], self.lr)
                tqdm.write(log_msg)

                # save image grid.
                if self.globalIter % self.config.save_img_every == 0:
                    with torch.no_grad():
                        x_test = self.G(self.z_test)

                    for _, latent in self.identity_loader:
                        self.save_image(self.G(latent), 'identity/')

                    self.save_image(x_test, 'grid/')
                    self.save_image(x_test,
                                    'resl_{}/'.format(int(floor(self.resl))))

                # tensorboard visualization.
                if self.use_tb:
                    with torch.no_grad():
                        x_test = self.G(self.z_test)
                    self.tb.add_scalar('image300/loss_g', loss_g.item(),
                                       self.globalIter)
                    self.tb.add_scalar('image300/loss_d', loss_d.item(),
                                       self.globalIter)
                    self.tb.add_scalar('tick/lr', self.lr, self.globalIter)
                    self.tb.add_scalar('tick/cur_resl',
                                       int(pow(2, floor(self.resl))),
                                       self.globalIter)
                    # '''IMAGE GRID
                    self.tb.add_image_grid(
                        'grid/x_test', 4,
                        utils.adjust_dyn_range(x_test.data.float(), [-1, 1],
                                               [0, 1]), self.globalIter)
                    self.tb.add_image_grid(
                        'grid/x_tilde', 4,
                        utils.adjust_dyn_range(self.x_tilde.data.float(),
                                               [-1, 1], [0, 1]),
                        self.globalIter)
                    self.tb.add_image_grid(
                        'grid/x_intp', 4,
                        utils.adjust_dyn_range(self.x.data.float(), [-1, 1],
                                               [0, 1]), self.globalIter)