Exemplo n.º 1
0
def main(argv):
    del argv  # unused arg
    if not FLAGS.use_gpu:
        raise ValueError('Only GPU is currently supported.')
    if FLAGS.num_cores > 1:
        raise ValueError('Only a single accelerator is currently supported.')
    tf.random.set_seed(FLAGS.seed)
    tf.io.gfile.makedirs(FLAGS.output_dir)

    batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores
    steps_per_eval = IMAGENET_VALIDATION_IMAGES // batch_size

    builder = utils.ImageNetInput(data_dir=FLAGS.data_dir, use_bfloat16=False)
    clean_test_dataset = builder.as_dataset(split=tfds.Split.TEST,
                                            batch_size=batch_size)
    test_datasets = {'clean': clean_test_dataset}
    corruption_types, max_intensity = utils.load_corrupted_test_info()
    for name in corruption_types:
        for intensity in range(1, max_intensity + 1):
            dataset_name = '{0}_{1}'.format(name, intensity)
            test_datasets[dataset_name] = utils.load_corrupted_test_dataset(
                corruption_name=name,
                corruption_intensity=intensity,
                batch_size=batch_size,
                drop_remainder=True,
                use_bfloat16=False)

    model = ub.models.resnet50_heteroscedastic(
        input_shape=(224, 224, 3),
        num_classes=NUM_CLASSES,
        temperature=FLAGS.temperature,
        num_factors=FLAGS.num_factors,
        num_mc_samples=FLAGS.num_mc_samples)

    logging.info('Model input shape: %s', model.input_shape)
    logging.info('Model output shape: %s', model.output_shape)
    logging.info('Model number of weights: %s', model.count_params())
    # Search for checkpoints from their index file; then remove the index suffix.
    ensemble_filenames = tf.io.gfile.glob(
        os.path.join(FLAGS.checkpoint_dir, '**/*.index'))
    ensemble_filenames = [filename[:-6] for filename in ensemble_filenames]
    ensemble_size = len(ensemble_filenames)
    logging.info('Ensemble size: %s', ensemble_size)
    logging.info('Ensemble number of weights: %s',
                 ensemble_size * model.count_params())
    logging.info('Ensemble filenames: %s', str(ensemble_filenames))
    checkpoint = tf.train.Checkpoint(model=model)

    # Write model predictions to files.
    num_datasets = len(test_datasets)
    for m, ensemble_filename in enumerate(ensemble_filenames):
        checkpoint.restore(ensemble_filename)
        for n, (name, test_dataset) in enumerate(test_datasets.items()):
            filename = '{dataset}_{member}.npy'.format(dataset=name, member=m)
            filename = os.path.join(FLAGS.output_dir, filename)
            if not tf.io.gfile.exists(filename):
                logits = []
                test_iterator = iter(test_dataset)
                for _ in range(steps_per_eval):
                    features, _ = next(test_iterator)  # pytype: disable=attribute-error
                    logits.append(model(features, training=False))

                logits = tf.concat(logits, axis=0)
                with tf.io.gfile.GFile(filename, 'w') as f:
                    np.save(f, logits.numpy())
            percent = (m * num_datasets +
                       (n + 1)) / (ensemble_size * num_datasets)
            message = (
                '{:.1%} completion for prediction: ensemble member {:d}/{:d}. '
                'Dataset {:d}/{:d}'.format(percent, m + 1, ensemble_size,
                                           n + 1, num_datasets))
            logging.info(message)

    metrics = {
        'test/negative_log_likelihood': tf.keras.metrics.Mean(),
        'test/gibbs_cross_entropy': tf.keras.metrics.Mean(),
        'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
        'test/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
    }
    corrupt_metrics = {}
    for name in test_datasets:
        corrupt_metrics['test/nll_{}'.format(name)] = tf.keras.metrics.Mean()
        corrupt_metrics['test/accuracy_{}'.format(name)] = (
            tf.keras.metrics.SparseCategoricalAccuracy())
        corrupt_metrics['test/ece_{}'.format(
            name)] = um.ExpectedCalibrationError(num_bins=FLAGS.num_bins)

    # Evaluate model predictions.
    for n, (name, test_dataset) in enumerate(test_datasets.items()):
        logits_dataset = []
        for m in range(ensemble_size):
            filename = '{dataset}_{member}.npy'.format(dataset=name, member=m)
            filename = os.path.join(FLAGS.output_dir, filename)
            with tf.io.gfile.GFile(filename, 'rb') as f:
                logits_dataset.append(np.load(f))

        logits_dataset = tf.convert_to_tensor(logits_dataset)
        test_iterator = iter(test_dataset)
        for step in range(steps_per_eval):
            _, labels = next(test_iterator)  # pytype: disable=attribute-error
            logits = logits_dataset[:, (step * batch_size):((step + 1) *
                                                            batch_size)]
            labels = tf.cast(tf.reshape(labels, [-1]), tf.int32)
            negative_log_likelihood = um.ensemble_cross_entropy(labels, logits)
            per_probs = tf.nn.softmax(logits)
            probs = tf.reduce_mean(per_probs, axis=0)
            if name == 'clean':
                gibbs_ce = um.gibbs_cross_entropy(labels, logits)
                metrics['test/negative_log_likelihood'].update_state(
                    negative_log_likelihood)
                metrics['test/gibbs_cross_entropy'].update_state(gibbs_ce)
                metrics['test/accuracy'].update_state(labels, probs)
                metrics['test/ece'].update_state(labels, probs)
            else:
                corrupt_metrics['test/nll_{}'.format(name)].update_state(
                    negative_log_likelihood)
                corrupt_metrics['test/accuracy_{}'.format(name)].update_state(
                    labels, probs)
                corrupt_metrics['test/ece_{}'.format(name)].update_state(
                    labels, probs)

        message = (
            '{:.1%} completion for evaluation: dataset {:d}/{:d}'.format(
                (n + 1) / num_datasets, n + 1, num_datasets))
        logging.info(message)

    corrupt_results = utils.aggregate_corrupt_metrics(
        corrupt_metrics, corruption_types, max_intensity,
        FLAGS.alexnet_errors_path)
    total_results = {name: metric.result() for name, metric in metrics.items()}
    total_results.update(corrupt_results)
    logging.info('Metrics: %s', total_results)
Exemplo n.º 2
0
def main(argv):
    del argv  # unused arg
    if not FLAGS.use_gpu:
        raise ValueError('Only GPU is currently supported.')
    if FLAGS.num_cores > 1:
        raise ValueError('Only a single accelerator is currently supported.')
    tf.random.set_seed(FLAGS.seed)
    tf.io.gfile.makedirs(FLAGS.output_dir)

    ds_info = tfds.builder(FLAGS.dataset).info
    batch_size = FLAGS.total_batch_size
    steps_per_eval = ds_info.splits['test'].num_examples // batch_size
    num_classes = ds_info.features['label'].num_classes

    data_dir = FLAGS.data_dir
    dataset_builder = ub.datasets.get(
        FLAGS.dataset,
        data_dir=data_dir,
        download_data=FLAGS.download_data,
        split=tfds.Split.TEST,
        drop_remainder=FLAGS.drop_remainder_for_eval)
    dataset = dataset_builder.load(batch_size=batch_size)
    test_datasets = {'clean': dataset}
    if FLAGS.eval_on_ood:
        ood_dataset_names = FLAGS.ood_dataset
        ood_datasets, steps_per_ood = ood_utils.load_ood_datasets(
            ood_dataset_names,
            dataset_builder,
            1. - FLAGS.train_proportion,
            batch_size,
            drop_remainder=FLAGS.drop_remainder_for_eval)
        test_datasets.update(ood_datasets)
    extra_kwargs = {}
    if FLAGS.dataset == 'cifar100':
        data_dir = FLAGS.cifar100_c_path
    corruption_types, _ = utils.load_corrupted_test_info(FLAGS.dataset)
    for corruption_type in corruption_types:
        for severity in range(1, 6):
            dataset = ub.datasets.get(
                f'{FLAGS.dataset}_corrupted',
                corruption_type=corruption_type,
                data_dir=data_dir,
                severity=severity,
                split=tfds.Split.TEST,
                drop_remainder=FLAGS.drop_remainder_for_eval,
                **extra_kwargs).load(batch_size=batch_size)
            test_datasets[f'{corruption_type}_{severity}'] = dataset

    model = ub.models.wide_resnet_sngp(
        input_shape=ds_info.features['image'].shape,
        batch_size=FLAGS.total_batch_size // FLAGS.num_cores,
        depth=28,
        width_multiplier=10,
        num_classes=num_classes,
        l2=0.,
        use_mc_dropout=FLAGS.use_mc_dropout,
        use_filterwise_dropout=FLAGS.use_filterwise_dropout,
        dropout_rate=FLAGS.dropout_rate,
        use_gp_layer=FLAGS.use_gp_layer,
        gp_input_dim=FLAGS.gp_input_dim,
        gp_hidden_dim=FLAGS.gp_hidden_dim,
        gp_scale=FLAGS.gp_scale,
        gp_bias=FLAGS.gp_bias,
        gp_input_normalization=FLAGS.gp_input_normalization,
        gp_random_feature_type=FLAGS.gp_random_feature_type,
        gp_cov_discount_factor=FLAGS.gp_cov_discount_factor,
        gp_cov_ridge_penalty=FLAGS.gp_cov_ridge_penalty,
        use_spec_norm=FLAGS.use_spec_norm,
        spec_norm_iteration=FLAGS.spec_norm_iteration,
        spec_norm_bound=FLAGS.spec_norm_bound)
    logging.info('Model input shape: %s', model.input_shape)
    logging.info('Model output shape: %s', model.output_shape)
    logging.info('Model number of weights: %s', model.count_params())

    # Search for checkpoints from their index file; then remove the index suffix.
    ensemble_filenames = tf.io.gfile.glob(
        os.path.join(FLAGS.checkpoint_dir, '**/*.index'))
    # Only apply ensemble on the models with the same model architecture
    ensemble_filenames0 = [
        filename for filename in ensemble_filenames
        if f'use_gp_layer:{FLAGS.use_gp_layer}' in filename
        and f'use_spec_norm:{FLAGS.use_spec_norm}' in filename
    ]
    np.random.seed(FLAGS.seed)
    ensemble_filenames = np.random.choice(ensemble_filenames0,
                                          FLAGS.ensemble_size,
                                          replace=True)

    ensemble_filenames = [filename[:-6] for filename in ensemble_filenames]
    ensemble_size = len(ensemble_filenames)
    logging.info('Ensemble size: %s', ensemble_size)
    logging.info('Ensemble filenames: %s', ensemble_filenames)
    logging.info('Ensemble number of weights: %s',
                 ensemble_size * model.count_params())
    logging.info('Ensemble filenames: %s', str(ensemble_filenames))
    checkpoint = tf.train.Checkpoint(model=model)

    # Write model predictions to files.
    num_datasets = len(test_datasets)
    for m, ensemble_filename in enumerate(ensemble_filenames):
        checkpoint.restore(ensemble_filename)
        for n, (name, test_dataset) in enumerate(test_datasets.items()):
            filename = '{dataset}_{member}.npy'.format(
                dataset=name.replace('/', '_'),
                member=m)  # ood dataset name has '/'
            filename = os.path.join(FLAGS.output_dir, filename)
            if not tf.io.gfile.exists(filename):
                logits = []
                test_iterator = iter(test_dataset)
                steps = steps_per_eval if 'ood/' not in name else steps_per_ood[
                    name]
                for _ in range(steps):
                    features = next(test_iterator)['features']  # pytype: disable=unsupported-operands
                    logits_member = model(features, training=False)
                    if isinstance(logits_member, (list, tuple)):
                        # If model returns a tuple of (logits, covmat), extract both
                        logits_member, covmat_member = logits_member
                        logits_member = ed.layers.utils.mean_field_logits(
                            logits_member, covmat_member,
                            FLAGS.gp_mean_field_factor_ensemble)
                    logits.append(logits_member)

                logits = tf.concat(logits, axis=0)
                with tf.io.gfile.GFile(filename, 'w') as f:
                    np.save(f, logits.numpy())
            percent = (m * num_datasets +
                       (n + 1)) / (ensemble_size * num_datasets)
            message = (
                '{:.1%} completion for prediction: ensemble member {:d}/{:d}. '
                'Dataset {:d}/{:d}'.format(percent, m + 1, ensemble_size,
                                           n + 1, num_datasets))
            logging.info(message)

    metrics = {
        'test/negative_log_likelihood': tf.keras.metrics.Mean(),
        'test/gibbs_cross_entropy': tf.keras.metrics.Mean(),
        'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
        'test/ece':
        rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
    }
    if FLAGS.eval_on_ood:
        ood_metrics = ood_utils.create_ood_metrics(ood_dataset_names)
        metrics.update(ood_metrics)
    corrupt_metrics = {}
    for name in test_datasets:
        corrupt_metrics['test/nll_{}'.format(name)] = tf.keras.metrics.Mean()
        corrupt_metrics['test/accuracy_{}'.format(name)] = (
            tf.keras.metrics.SparseCategoricalAccuracy())
        corrupt_metrics['test/ece_{}'.format(name)] = (
            rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins))

    # Evaluate model predictions.
    for n, (name, test_dataset) in enumerate(test_datasets.items()):
        logits_dataset = []
        for m in range(ensemble_size):
            filename = '{dataset}_{member}.npy'.format(
                dataset=name.replace('/', '_'),
                member=m)  # ood dataset name has '/'
            filename = os.path.join(FLAGS.output_dir, filename)
            with tf.io.gfile.GFile(filename, 'rb') as f:
                logits_dataset.append(np.load(f))

        logits_dataset = tf.convert_to_tensor(logits_dataset)
        test_iterator = iter(test_dataset)
        steps = steps_per_eval if 'ood/' not in name else steps_per_ood[name]
        for step in range(steps):
            inputs = next(test_iterator)
            labels = inputs['labels']  # pytype: disable=unsupported-operands
            logits = logits_dataset[:, (step * batch_size):((step + 1) *
                                                            batch_size)]
            labels = tf.cast(labels, tf.int32)
            negative_log_likelihood_metric = rm.metrics.EnsembleCrossEntropy()
            negative_log_likelihood_metric.add_batch(logits, labels=labels)
            negative_log_likelihood = list(
                negative_log_likelihood_metric.result().values())[0]
            per_probs = tf.nn.softmax(logits)
            probs = tf.reduce_mean(per_probs, axis=0)
            logits_mean = tf.reduce_mean(logits, axis=0)
            if name == 'clean':
                gibbs_ce_metric = rm.metrics.GibbsCrossEntropy()
                gibbs_ce_metric.add_batch(logits, labels=labels)
                gibbs_ce = list(gibbs_ce_metric.result().values())[0]
                metrics['test/negative_log_likelihood'].update_state(
                    negative_log_likelihood)
                metrics['test/gibbs_cross_entropy'].update_state(gibbs_ce)
                metrics['test/accuracy'].update_state(labels, probs)
                metrics['test/ece'].add_batch(probs, label=labels)
            elif name.startswith('ood/'):
                ood_labels = 1 - inputs['is_in_distribution']  # pytype: disable=unsupported-operands
                if FLAGS.dempster_shafer_ood:
                    ood_scores = ood_utils.DempsterShaferUncertainty(
                        logits_mean)
                else:
                    ood_scores = 1 - tf.reduce_max(probs, axis=-1)

                for metric_name, metric in metrics.items():
                    if name in metric_name:
                        metric.update_state(ood_labels, ood_scores)
            else:
                corrupt_metrics['test/nll_{}'.format(name)].update_state(
                    negative_log_likelihood)
                corrupt_metrics['test/accuracy_{}'.format(name)].update_state(
                    labels, probs)
                corrupt_metrics['test/ece_{}'.format(name)].add_batch(
                    probs, label=labels)

        message = (
            '{:.1%} completion for evaluation: dataset {:d}/{:d}'.format(
                (n + 1) / num_datasets, n + 1, num_datasets))
        logging.info(message)

    corrupt_results = utils.aggregate_corrupt_metrics(corrupt_metrics,
                                                      corruption_types)
    total_results = {name: metric.result() for name, metric in metrics.items()}
    total_results.update(corrupt_results)
    # Metrics from Robustness Metrics (like ECE) will return a dict with a
    # single key/value, instead of a scalar.
    total_results = {
        k: (list(v.values())[0] if isinstance(v, dict) else v)
        for k, v in total_results.items()
    }
    logging.info('Metrics: %s', total_results)
Exemplo n.º 3
0
def main(argv):
    del argv  # unused arg
    tf.io.gfile.makedirs(FLAGS.output_dir)
    logging.info('Saving checkpoints at %s', FLAGS.output_dir)
    tf.random.set_seed(FLAGS.seed)

    batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores
    steps_per_epoch = APPROX_IMAGENET_TRAIN_IMAGES // batch_size
    steps_per_eval = IMAGENET_VALIDATION_IMAGES // batch_size

    if FLAGS.use_gpu:
        logging.info('Use GPU')
        strategy = tf.distribute.MirroredStrategy()
    else:
        logging.info('Use TPU at %s',
                     FLAGS.tpu if FLAGS.tpu is not None else 'local')
        resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
            tpu=FLAGS.tpu)
        tf.config.experimental_connect_to_cluster(resolver)
        tf.tpu.experimental.initialize_tpu_system(resolver)
        strategy = tf.distribute.TPUStrategy(resolver)

    mixup_params = {
        'ensemble_size': 1,
        'mixup_alpha': FLAGS.mixup_alpha,
        'adaptive_mixup': FLAGS.adaptive_mixup,
        'num_classes': NUM_CLASSES,
    }
    train_builder = utils.ImageNetInput(data_dir=FLAGS.data_dir,
                                        one_hot=(FLAGS.mixup_alpha > 0),
                                        use_bfloat16=FLAGS.use_bfloat16,
                                        mixup_params=mixup_params)
    test_builder = utils.ImageNetInput(data_dir=FLAGS.data_dir,
                                       use_bfloat16=FLAGS.use_bfloat16)
    train_dataset = train_builder.as_dataset(split=tfds.Split.TRAIN,
                                             batch_size=batch_size)
    clean_test_dataset = test_builder.as_dataset(split=tfds.Split.TEST,
                                                 batch_size=batch_size)
    train_dataset = strategy.experimental_distribute_dataset(train_dataset)
    test_datasets = {
        'clean': strategy.experimental_distribute_dataset(clean_test_dataset)
    }
    if FLAGS.adaptive_mixup:
        imagenet_confidence_dataset = test_builder.as_dataset(
            split=tfds.Split.VALIDATION, batch_size=batch_size)
        imagenet_confidence_dataset = (
            strategy.experimental_distribute_dataset(
                imagenet_confidence_dataset))
    if FLAGS.corruptions_interval > 0:
        corruption_types, max_intensity = utils.load_corrupted_test_info()
        for name in corruption_types:
            for intensity in range(1, max_intensity + 1):
                dataset_name = '{0}_{1}'.format(name, intensity)
                dataset = utils.load_corrupted_test_dataset(
                    batch_size=batch_size,
                    corruption_name=name,
                    corruption_intensity=intensity,
                    use_bfloat16=FLAGS.use_bfloat16)
                test_datasets[dataset_name] = (
                    strategy.experimental_distribute_dataset(dataset))

    if FLAGS.use_bfloat16:
        policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16')
        tf.keras.mixed_precision.experimental.set_policy(policy)

    with strategy.scope():
        logging.info('Building Keras ResNet-50 model')
        model = ub.models.resnet50_dropout(
            input_shape=(224, 224, 3),
            num_classes=NUM_CLASSES,
            dropout_rate=FLAGS.dropout_rate,
            filterwise_dropout=FLAGS.filterwise_dropout)
        logging.info('Model input shape: %s', model.input_shape)
        logging.info('Model output shape: %s', model.output_shape)
        logging.info('Model number of weights: %s', model.count_params())
        # Scale learning rate and decay epochs by vanilla settings.
        base_lr = FLAGS.base_learning_rate * batch_size / 256
        decay_epochs = [
            (FLAGS.train_epochs * 30) // 90,
            (FLAGS.train_epochs * 60) // 90,
            (FLAGS.train_epochs * 80) // 90,
        ]
        learning_rate = ub.schedules.WarmUpPiecewiseConstantSchedule(
            steps_per_epoch=steps_per_epoch,
            base_learning_rate=base_lr,
            decay_ratio=0.1,
            decay_epochs=decay_epochs,
            warmup_epochs=5)
        optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate,
                                            momentum=0.9,
                                            nesterov=True)
        metrics = {
            'train/negative_log_likelihood': tf.keras.metrics.Mean(),
            'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'train/loss': tf.keras.metrics.Mean(),
            'train/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
            'test/negative_log_likelihood': tf.keras.metrics.Mean(),
            'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
            'test/ece': um.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
        }
        if FLAGS.corruptions_interval > 0:
            corrupt_metrics = {}
            for intensity in range(1, max_intensity + 1):
                for corruption in corruption_types:
                    dataset_name = '{0}_{1}'.format(corruption, intensity)
                    corrupt_metrics['test/nll_{}'.format(dataset_name)] = (
                        tf.keras.metrics.Mean())
                    corrupt_metrics['test/accuracy_{}'.format(
                        dataset_name)] = (
                            tf.keras.metrics.SparseCategoricalAccuracy())
                    corrupt_metrics['test/ece_{}'.format(dataset_name)] = (
                        um.ExpectedCalibrationError(num_bins=FLAGS.num_bins))
        logging.info('Finished building Keras ResNet-50 model')

        checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
        latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
        initial_epoch = 0
        if latest_checkpoint:
            # checkpoint.restore must be within a strategy.scope() so that optimizer
            # slot variables are mirrored.
            checkpoint.restore(latest_checkpoint)
            logging.info('Loaded checkpoint %s', latest_checkpoint)
            initial_epoch = optimizer.iterations.numpy() // steps_per_epoch

    summary_writer = tf.summary.create_file_writer(
        os.path.join(FLAGS.output_dir, 'summaries'))

    @tf.function
    def train_step(iterator):
        """Training StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            with tf.GradientTape() as tape:
                logits = model(images, training=True)
                if FLAGS.use_bfloat16:
                    logits = tf.cast(logits, tf.float32)

                if FLAGS.mixup_alpha > 0:
                    negative_log_likelihood = tf.reduce_mean(
                        tf.keras.losses.categorical_crossentropy(
                            labels, logits, from_logits=True))
                else:
                    negative_log_likelihood = tf.reduce_mean(
                        tf.keras.losses.sparse_categorical_crossentropy(
                            labels, logits, from_logits=True))
                filtered_variables = []
                for var in model.trainable_variables:
                    # Apply l2 on the weights. This excludes BN parameters and biases, but
                    # pay caution to their naming scheme.
                    if 'kernel' in var.name or 'bias' in var.name:
                        filtered_variables.append(tf.reshape(var, (-1, )))

                l2_loss = FLAGS.l2 * 2 * tf.nn.l2_loss(
                    tf.concat(filtered_variables, axis=0))
                # Scale the loss given the TPUStrategy will reduce sum all gradients.
                loss = negative_log_likelihood + l2_loss
                scaled_loss = loss / strategy.num_replicas_in_sync

            grads = tape.gradient(scaled_loss, model.trainable_variables)
            optimizer.apply_gradients(zip(grads, model.trainable_variables))

            probs = tf.nn.softmax(logits)
            if FLAGS.mixup_alpha > 0:
                labels = tf.argmax(labels, axis=-1)
            metrics['train/ece'].update_state(labels, probs)
            metrics['train/loss'].update_state(loss)
            metrics['train/negative_log_likelihood'].update_state(
                negative_log_likelihood)
            metrics['train/accuracy'].update_state(labels, logits)

        strategy.run(step_fn, args=(next(iterator), ))

    @tf.function
    def test_step(iterator, dataset_name):
        """Evaluation StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs

            logits_list = []
            if dataset_name == 'confidence_validation':
                num_dropout_samples = 1
            else:
                num_dropout_samples = FLAGS.num_dropout_samples
            for _ in range(num_dropout_samples):
                logits = model(images, training=False)
                if FLAGS.use_bfloat16:
                    logits = tf.cast(logits, tf.float32)
                logits_list.append(logits)

            # Logits dimension is (num_samples, batch_size, num_classes).
            logits_list = tf.stack(logits_list, axis=0)
            probs_list = tf.nn.softmax(logits_list)
            probs = tf.reduce_mean(probs_list, axis=0)
            labels_broadcasted = tf.broadcast_to(
                labels, [num_dropout_samples, labels.shape[0]])

            log_likelihoods = -tf.keras.losses.sparse_categorical_crossentropy(
                labels_broadcasted, logits_list, from_logits=True)
            negative_log_likelihood = tf.reduce_mean(
                -tf.reduce_logsumexp(log_likelihoods, axis=[0]) +
                tf.math.log(float(num_dropout_samples)))

            if dataset_name == 'clean':
                metrics['test/negative_log_likelihood'].update_state(
                    negative_log_likelihood)
                metrics['test/accuracy'].update_state(labels, probs)
                metrics['test/ece'].update_state(labels, probs)
            elif dataset_name != 'confidence_validation':
                corrupt_metrics['test/nll_{}'.format(
                    dataset_name)].update_state(negative_log_likelihood)
                corrupt_metrics['test/accuracy_{}'.format(
                    dataset_name)].update_state(labels, probs)
                corrupt_metrics['test/ece_{}'.format(
                    dataset_name)].update_state(labels, probs)

            if dataset_name == 'confidence_validation':
                return tf.reshape(probs, [1, -1, NUM_CLASSES]), labels

        if dataset_name == 'confidence_validation':
            return strategy.run(step_fn, args=(next(iterator), ))
        else:
            strategy.run(step_fn, args=(next(iterator), ))

    metrics.update({'test/ms_per_example': tf.keras.metrics.Mean()})

    train_iterator = iter(train_dataset)
    start_time = time.time()
    for epoch in range(initial_epoch, FLAGS.train_epochs):
        logging.info('Starting to run epoch: %s', epoch)
        for step in range(steps_per_epoch):
            train_step(train_iterator)

            current_step = epoch * steps_per_epoch + (step + 1)
            max_steps = steps_per_epoch * FLAGS.train_epochs
            time_elapsed = time.time() - start_time
            steps_per_sec = float(current_step) / time_elapsed
            eta_seconds = (max_steps - current_step) / steps_per_sec
            message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
                       'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                           current_step / max_steps, epoch + 1,
                           FLAGS.train_epochs, steps_per_sec, eta_seconds / 60,
                           time_elapsed / 60))
            if step % 20 == 0:
                logging.info(message)

        if FLAGS.adaptive_mixup:
            confidence_set_iterator = iter(imagenet_confidence_dataset)
            predictions_list = []
            labels_list = []
            for step in range(FLAGS.confidence_eval_iterations):
                temp_predictions, temp_labels = test_step(
                    confidence_set_iterator, 'confidence_validation')
                predictions_list.append(temp_predictions)
                labels_list.append(temp_labels)
            predictions = [
                tf.concat(list(predictions_list[i].values), axis=1)
                for i in range(len(predictions_list))
            ]
            labels = [
                tf.concat(list(labels_list[i].values), axis=0)
                for i in range(len(labels_list))
            ]
            predictions = tf.concat(predictions, axis=1)
            labels = tf.cast(tf.concat(labels, axis=0), tf.int64)

            def compute_acc_conf(preds, label, focus_class):
                class_preds = tf.boolean_mask(preds,
                                              label == focus_class,
                                              axis=1)
                class_pred_labels = tf.argmax(class_preds, axis=-1)
                confidence = tf.reduce_mean(
                    tf.reduce_max(class_preds, axis=-1), -1)
                accuracy = tf.reduce_mean(tf.cast(
                    class_pred_labels == focus_class, tf.float32),
                                          axis=-1)
                return accuracy - confidence

            calibration_per_class = [
                compute_acc_conf(predictions, labels, i)
                for i in range(NUM_CLASSES)
            ]
            calibration_per_class = tf.stack(calibration_per_class, axis=1)
            logging.info('calibration per class')
            logging.info(calibration_per_class)
            mixup_coeff = tf.where(calibration_per_class > 0, 1.0,
                                   FLAGS.mixup_alpha)
            mixup_coeff = tf.clip_by_value(mixup_coeff, 0, 1)
            logging.info('mixup coeff')
            logging.info(mixup_coeff)
            mixup_params['mixup_coeff'] = mixup_coeff
            builder = utils.ImageNetInput(data_dir=FLAGS.data_dir,
                                          one_hot=(FLAGS.mixup_alpha > 0),
                                          use_bfloat16=FLAGS.use_bfloat16,
                                          mixup_params=mixup_params)
            train_dataset = builder.as_dataset(split=tfds.Split.TRAIN,
                                               batch_size=batch_size)
            train_dataset = strategy.experimental_distribute_dataset(
                train_dataset)
            train_iterator = iter(train_dataset)

        if (epoch + 1) % FLAGS.eval_interval == 0:
            datasets_to_evaluate = {'clean': test_datasets['clean']}
            if (FLAGS.corruptions_interval > 0
                    and (epoch + 1) % FLAGS.corruptions_interval == 0):
                datasets_to_evaluate = test_datasets
            for dataset_name, test_dataset in datasets_to_evaluate.items():
                test_iterator = iter(test_dataset)
                logging.info('Testing on dataset %s', dataset_name)
                for step in range(steps_per_eval):
                    if step % 20 == 0:
                        logging.info(
                            'Starting to run eval step %s of epoch: %s', step,
                            epoch)
                    test_start_time = time.time()
                    test_step(test_iterator, dataset_name)
                    ms_per_example = (time.time() -
                                      test_start_time) * 1e6 / batch_size
                    metrics['test/ms_per_example'].update_state(ms_per_example)

            logging.info('Done with testing on %s', dataset_name)

            corrupt_results = {}
            if (FLAGS.corruptions_interval > 0
                    and (epoch + 1) % FLAGS.corruptions_interval == 0):
                corrupt_results = utils.aggregate_corrupt_metrics(
                    corrupt_metrics, corruption_types, max_intensity,
                    FLAGS.alexnet_errors_path)

        logging.info('Train Loss: %.4f, Accuracy: %.2f%%',
                     metrics['train/loss'].result(),
                     metrics['train/accuracy'].result() * 100)
        logging.info('Test NLL: %.4f, Accuracy: %.2f%%',
                     metrics['test/negative_log_likelihood'].result(),
                     metrics['test/accuracy'].result() * 100)
        total_results = {
            name: metric.result()
            for name, metric in metrics.items()
        }
        total_results.update(corrupt_results)
        with summary_writer.as_default():
            for name, result in total_results.items():
                tf.summary.scalar(name, result, step=epoch + 1)

        for metric in metrics.values():
            metric.reset_states()

        if (FLAGS.checkpoint_interval > 0
                and (epoch + 1) % FLAGS.checkpoint_interval == 0):
            checkpoint_name = checkpoint.save(
                os.path.join(FLAGS.output_dir, 'checkpoint'))
            logging.info('Saved checkpoint to %s', checkpoint_name)

    final_save_name = os.path.join(FLAGS.output_dir, 'model')
    model.save(final_save_name)
    logging.info('Saved model to %s', final_save_name)
Exemplo n.º 4
0
def main(argv):
  del argv  # unused arg
  tf.random.set_seed(FLAGS.seed)

  per_core_batch_size = FLAGS.per_core_batch_size // FLAGS.ensemble_size
  batch_size = per_core_batch_size * FLAGS.num_cores
  steps_per_epoch = APPROX_IMAGENET_TRAIN_IMAGES // batch_size
  steps_per_eval = IMAGENET_VALIDATION_IMAGES // batch_size

  logging.info('Saving checkpoints at %s', FLAGS.output_dir)

  data_dir = FLAGS.data_dir
  if FLAGS.use_gpu:
    logging.info('Use GPU')
    strategy = tf.distribute.MirroredStrategy()
  else:
    logging.info('Use TPU at %s',
                 FLAGS.tpu if FLAGS.tpu is not None else 'local')
    resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu=FLAGS.tpu)
    tf.config.experimental_connect_to_cluster(resolver)
    tf.tpu.experimental.initialize_tpu_system(resolver)
    strategy = tf.distribute.TPUStrategy(resolver)

  train_builder = ub.datasets.ImageNetDataset(
      split=tfds.Split.TRAIN,
      use_bfloat16=FLAGS.use_bfloat16,
      data_dir=data_dir)
  train_dataset = train_builder.load(batch_size=batch_size, strategy=strategy)
  test_builder = ub.datasets.ImageNetDataset(
      split=tfds.Split.TEST, use_bfloat16=FLAGS.use_bfloat16, data_dir=data_dir)
  clean_test_dataset = test_builder.load(
      batch_size=batch_size, strategy=strategy)
  test_datasets = {
      'clean': clean_test_dataset
  }
  if FLAGS.corruptions_interval > 0:
    corruption_types, max_intensity = utils.load_corrupted_test_info()
    for name in corruption_types:
      for intensity in range(1, max_intensity + 1):
        dataset_name = '{0}_{1}'.format(name, intensity)
        dataset = utils.load_corrupted_test_dataset(
            batch_size=batch_size,
            corruption_name=name,
            corruption_intensity=intensity,
            use_bfloat16=FLAGS.use_bfloat16)
        test_datasets[dataset_name] = (
            strategy.experimental_distribute_dataset(dataset))

  if FLAGS.use_bfloat16:
    tf.keras.mixed_precision.set_global_policy('mixed_bfloat16')

  summary_writer = tf.summary.create_file_writer(
      os.path.join(FLAGS.output_dir, 'summaries'))

  with strategy.scope():
    logging.info('Building Keras ResNet-50 model')
    model = ub.models.resnet50_rank1(
        input_shape=(224, 224, 3),
        num_classes=NUM_CLASSES,
        alpha_initializer=FLAGS.alpha_initializer,
        gamma_initializer=FLAGS.gamma_initializer,
        alpha_regularizer=FLAGS.alpha_regularizer,
        gamma_regularizer=FLAGS.gamma_regularizer,
        use_additive_perturbation=FLAGS.use_additive_perturbation,
        ensemble_size=FLAGS.ensemble_size,
        random_sign_init=FLAGS.random_sign_init,
        dropout_rate=FLAGS.dropout_rate,
        prior_stddev=FLAGS.prior_stddev,
        use_tpu=not FLAGS.use_gpu,
        use_ensemble_bn=FLAGS.use_ensemble_bn)
    logging.info('Model input shape: %s', model.input_shape)
    logging.info('Model output shape: %s', model.output_shape)
    logging.info('Model number of weights: %s', model.count_params())
    # Scale learning rate and decay epochs by vanilla settings.
    base_lr = FLAGS.base_learning_rate * batch_size / 256
    decay_epochs = [
        (FLAGS.train_epochs * 30) // 90,
        (FLAGS.train_epochs * 60) // 90,
        (FLAGS.train_epochs * 80) // 90,
    ]
    learning_rate = ub.schedules.WarmUpPiecewiseConstantSchedule(
        steps_per_epoch=steps_per_epoch,
        base_learning_rate=base_lr,
        decay_ratio=0.1,
        decay_epochs=decay_epochs,
        warmup_epochs=5)
    optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate,
                                        momentum=1.0 - FLAGS.one_minus_momentum,
                                        nesterov=True)
    metrics = {
        'train/negative_log_likelihood': tf.keras.metrics.Mean(),
        'train/kl': tf.keras.metrics.Mean(),
        'train/kl_scale': tf.keras.metrics.Mean(),
        'train/elbo': tf.keras.metrics.Mean(),
        'train/loss': tf.keras.metrics.Mean(),
        'train/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
        'train/ece': rm.metrics.ExpectedCalibrationError(
            num_bins=FLAGS.num_bins),
        'train/diversity': rm.metrics.AveragePairwiseDiversity(),
        'test/negative_log_likelihood': tf.keras.metrics.Mean(),
        'test/kl': tf.keras.metrics.Mean(),
        'test/elbo': tf.keras.metrics.Mean(),
        'test/accuracy': tf.keras.metrics.SparseCategoricalAccuracy(),
        'test/ece': rm.metrics.ExpectedCalibrationError(
            num_bins=FLAGS.num_bins),
        'test/diversity': rm.metrics.AveragePairwiseDiversity(),
        'test/member_accuracy_mean': (
            tf.keras.metrics.SparseCategoricalAccuracy()),
        'test/member_ece_mean': rm.metrics.ExpectedCalibrationError(
            num_bins=FLAGS.num_bins),
    }
    if FLAGS.corruptions_interval > 0:
      corrupt_metrics = {}
      for intensity in range(1, max_intensity + 1):
        for corruption in corruption_types:
          dataset_name = '{0}_{1}'.format(corruption, intensity)
          corrupt_metrics['test/nll_{}'.format(dataset_name)] = (
              tf.keras.metrics.Mean())
          corrupt_metrics['test/kl_{}'.format(dataset_name)] = (
              tf.keras.metrics.Mean())
          corrupt_metrics['test/elbo_{}'.format(dataset_name)] = (
              tf.keras.metrics.Mean())
          corrupt_metrics['test/accuracy_{}'.format(dataset_name)] = (
              tf.keras.metrics.SparseCategoricalAccuracy())
          corrupt_metrics['test/ece_{}'.format(dataset_name)] = (
              rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins))

    if FLAGS.ensemble_size > 1:
      for i in range(FLAGS.ensemble_size):
        metrics['test/nll_member_{}'.format(i)] = tf.keras.metrics.Mean()
        metrics['test/accuracy_member_{}'.format(i)] = (
            tf.keras.metrics.SparseCategoricalAccuracy())

    logging.info('Finished building Keras ResNet-50 model')

    checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
    latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
    initial_epoch = 0
    if latest_checkpoint:
      # checkpoint.restore must be within a strategy.scope() so that optimizer
      # slot variables are mirrored.
      checkpoint.restore(latest_checkpoint)
      logging.info('Loaded checkpoint %s', latest_checkpoint)
      initial_epoch = optimizer.iterations.numpy() // steps_per_epoch

  def compute_l2_loss(model):
    filtered_variables = []
    for var in model.trainable_variables:
      # Apply l2 on the BN parameters and bias terms. This
      # excludes only fast weight approximate posterior/prior parameters,
      # but pay caution to their naming scheme.
      if ('kernel' in var.name or
          'batch_norm' in var.name or
          'bias' in var.name):
        filtered_variables.append(tf.reshape(var, (-1,)))
    l2_loss = FLAGS.l2 * 2 * tf.nn.l2_loss(
        tf.concat(filtered_variables, axis=0))
    return l2_loss

  @tf.function
  def train_step(iterator):
    """Training StepFn."""
    def step_fn(inputs):
      """Per-Replica StepFn."""
      images = inputs['features']
      labels = inputs['labels']
      if FLAGS.ensemble_size > 1:
        images = tf.tile(images, [FLAGS.ensemble_size, 1, 1, 1])
        labels = tf.tile(labels, [FLAGS.ensemble_size])

      with tf.GradientTape() as tape:
        logits = model(images, training=True)
        if FLAGS.use_bfloat16:
          logits = tf.cast(logits, tf.float32)

        probs = tf.nn.softmax(logits)
        if FLAGS.ensemble_size > 1:
          per_probs = tf.reshape(
              probs, tf.concat([[FLAGS.ensemble_size, -1], probs.shape[1:]], 0))
          metrics['train/diversity'].add_batch(per_probs)

        negative_log_likelihood = tf.reduce_mean(
            tf.keras.losses.sparse_categorical_crossentropy(labels,
                                                            logits,
                                                            from_logits=True))
        l2_loss = compute_l2_loss(model)
        kl = sum(model.losses) / APPROX_IMAGENET_TRAIN_IMAGES
        kl_scale = tf.cast(optimizer.iterations + 1, kl.dtype)
        kl_scale /= steps_per_epoch * FLAGS.kl_annealing_epochs
        kl_scale = tf.minimum(1., kl_scale)
        kl_loss = kl_scale * kl

        # Scale the loss given the TPUStrategy will reduce sum all gradients.
        loss = negative_log_likelihood + l2_loss + kl_loss
        scaled_loss = loss / strategy.num_replicas_in_sync
        elbo = -(negative_log_likelihood + l2_loss + kl)

      grads = tape.gradient(scaled_loss, model.trainable_variables)

      # Separate learning rate implementation.
      if FLAGS.fast_weight_lr_multiplier != 1.0:
        grads_and_vars = []
        for grad, var in zip(grads, model.trainable_variables):
          # Apply different learning rate on the fast weights. This excludes BN
          # and slow weights, but pay caution to the naming scheme.
          if ('batch_norm' not in var.name and 'kernel' not in var.name):
            grads_and_vars.append((grad * FLAGS.fast_weight_lr_multiplier,
                                   var))
          else:
            grads_and_vars.append((grad, var))
        optimizer.apply_gradients(grads_and_vars)
      else:
        optimizer.apply_gradients(zip(grads, model.trainable_variables))

      metrics['train/negative_log_likelihood'].update_state(
          negative_log_likelihood)
      metrics['train/kl'].update_state(kl)
      metrics['train/kl_scale'].update_state(kl_scale)
      metrics['train/elbo'].update_state(elbo)
      metrics['train/loss'].update_state(loss)
      metrics['train/accuracy'].update_state(labels, logits)
      metrics['train/ece'].add_batch(probs, label=labels)

    for _ in tf.range(tf.cast(steps_per_epoch, tf.int32)):
      strategy.run(step_fn, args=(next(iterator),))

  @tf.function
  def test_step(iterator, dataset_name):
    """Evaluation StepFn."""
    def step_fn(inputs):
      """Per-Replica StepFn."""
      images = inputs['features']
      labels = inputs['labels']
      if FLAGS.ensemble_size > 1:
        images = tf.tile(images, [FLAGS.ensemble_size, 1, 1, 1])
      logits = tf.reshape(
          [model(images, training=False)
           for _ in range(FLAGS.num_eval_samples)],
          [FLAGS.num_eval_samples, FLAGS.ensemble_size, -1, NUM_CLASSES])
      if FLAGS.use_bfloat16:
        logits = tf.cast(logits, tf.float32)
      all_probs = tf.nn.softmax(logits)
      probs = tf.math.reduce_mean(all_probs, axis=[0, 1])  # marginalize

      # Negative log marginal likelihood computed in a numerically-stable way.
      labels_broadcasted = tf.broadcast_to(
          labels,
          [FLAGS.num_eval_samples, FLAGS.ensemble_size, tf.shape(labels)[0]])
      log_likelihoods = -tf.keras.losses.sparse_categorical_crossentropy(
          labels_broadcasted, logits, from_logits=True)
      negative_log_likelihood = tf.reduce_mean(
          -tf.reduce_logsumexp(log_likelihoods, axis=[0, 1]) +
          tf.math.log(float(FLAGS.num_eval_samples * FLAGS.ensemble_size)))

      l2_loss = compute_l2_loss(model)
      kl = sum(model.losses) / IMAGENET_VALIDATION_IMAGES
      elbo = -(negative_log_likelihood + l2_loss + kl)

      if dataset_name == 'clean':
        if FLAGS.ensemble_size > 1:
          per_probs = tf.reduce_mean(all_probs, axis=0)  # marginalize samples
          metrics['test/diversity'].add_batch(per_probs)
          for i in range(FLAGS.ensemble_size):
            member_probs = per_probs[i]
            member_loss = tf.keras.losses.sparse_categorical_crossentropy(
                labels, member_probs)
            metrics['test/nll_member_{}'.format(i)].update_state(member_loss)
            metrics['test/accuracy_member_{}'.format(i)].update_state(
                labels, member_probs)
            metrics['test/member_accuracy_mean'].update_state(
                labels, member_probs)
            metrics['test/member_ece_mean'].add_batch(
                member_probs, label=labels)

        metrics['test/negative_log_likelihood'].update_state(
            negative_log_likelihood)
        metrics['test/kl'].update_state(kl)
        metrics['test/elbo'].update_state(elbo)
        metrics['test/accuracy'].update_state(labels, probs)
        metrics['test/ece'].add_batch(probs, label=labels)
      else:
        corrupt_metrics['test/nll_{}'.format(dataset_name)].update_state(
            negative_log_likelihood)
        corrupt_metrics['test/kl_{}'.format(dataset_name)].update_state(kl)
        corrupt_metrics['test/elbo_{}'.format(dataset_name)].update_state(elbo)
        corrupt_metrics['test/accuracy_{}'.format(dataset_name)].update_state(
            labels, probs)
        corrupt_metrics['test/ece_{}'.format(dataset_name)].add_batch(
            probs, label=labels)

    for _ in tf.range(tf.cast(steps_per_eval, tf.int32)):
      strategy.run(step_fn, args=(next(iterator),))

  train_iterator = iter(train_dataset)
  start_time = time.time()

  for epoch in range(initial_epoch, FLAGS.train_epochs):
    logging.info('Starting to run epoch: %s', epoch)
    train_step(train_iterator)

    current_step = (epoch + 1) * steps_per_epoch
    max_steps = steps_per_epoch * FLAGS.train_epochs
    time_elapsed = time.time() - start_time
    steps_per_sec = float(current_step) / time_elapsed
    eta_seconds = (max_steps - current_step) / steps_per_sec
    message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
               'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                   current_step / max_steps,
                   epoch + 1,
                   FLAGS.train_epochs,
                   steps_per_sec,
                   eta_seconds / 60,
                   time_elapsed / 60))
    logging.info(message)

    datasets_to_evaluate = {'clean': test_datasets['clean']}
    if (FLAGS.corruptions_interval > 0 and
        (epoch + 1) % FLAGS.corruptions_interval == 0):
      datasets_to_evaluate = test_datasets
    for dataset_name, test_dataset in datasets_to_evaluate.items():
      logging.info('Testing on dataset %s', dataset_name)
      test_iterator = iter(test_dataset)
      logging.info('Starting to run eval at epoch: %s', epoch)
      test_step(test_iterator, dataset_name)
      logging.info('Done with testing on %s', dataset_name)

    corrupt_results = {}
    if (FLAGS.corruptions_interval > 0 and
        (epoch + 1) % FLAGS.corruptions_interval == 0):
      corrupt_results = utils.aggregate_corrupt_metrics(
          corrupt_metrics, corruption_types, max_intensity,
          FLAGS.alexnet_errors_path)

    logging.info('Train Loss: %.4f, Accuracy: %.2f%%',
                 metrics['train/loss'].result(),
                 metrics['train/accuracy'].result() * 100)
    logging.info('Test NLL: %.4f, Accuracy: %.2f%%',
                 metrics['test/negative_log_likelihood'].result(),
                 metrics['test/accuracy'].result() * 100)

    for i in range(FLAGS.ensemble_size):
      logging.info('Member %d Test Loss: %.4f, Accuracy: %.2f%%',
                   i, metrics['test/nll_member_{}'.format(i)].result(),
                   metrics['test/accuracy_member_{}'.format(i)].result() * 100)

    total_results = {name: metric.result() for name, metric in metrics.items()}
    total_results.update(corrupt_results)
    # Results from Robustness Metrics themselves return a dict, so flatten them.
    total_results = utils.flatten_dictionary(total_results)
    with summary_writer.as_default():
      for name, result in total_results.items():
        tf.summary.scalar(name, result, step=epoch + 1)

    for metric in metrics.values():
      metric.reset_states()

    if (FLAGS.checkpoint_interval > 0 and
        (epoch + 1) % FLAGS.checkpoint_interval == 0):
      checkpoint_name = checkpoint.save(os.path.join(
          FLAGS.output_dir, 'checkpoint'))
      logging.info('Saved checkpoint to %s', checkpoint_name)

  final_checkpoint_name = checkpoint.save(
      os.path.join(FLAGS.output_dir, 'checkpoint'))
  logging.info('Saved last checkpoint to %s', final_checkpoint_name)
  with summary_writer.as_default():
    hp.hparams({
        'base_learning_rate': FLAGS.base_learning_rate,
        'one_minus_momentum': FLAGS.one_minus_momentum,
        'l2': FLAGS.l2,
        'fast_weight_lr_multiplier': FLAGS.fast_weight_lr_multiplier,
        'num_eval_samples': FLAGS.num_eval_samples,
    })
Exemplo n.º 5
0
def main(argv):
    del argv  # unused arg
    tf.io.gfile.makedirs(FLAGS.output_dir)
    logging.info('Saving checkpoints at %s', FLAGS.output_dir)
    tf.random.set_seed(FLAGS.seed)

    if FLAGS.use_gpu:
        logging.info('Use GPU')
        strategy = tf.distribute.MirroredStrategy()
    else:
        logging.info('Use TPU at %s',
                     FLAGS.tpu if FLAGS.tpu is not None else 'local')
        resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
            tpu=FLAGS.tpu)
        tf.config.experimental_connect_to_cluster(resolver)
        tf.tpu.experimental.initialize_tpu_system(resolver)
        strategy = tf.distribute.experimental.TPUStrategy(resolver)

    train_input_fn = utils.load_input_fn(split=tfds.Split.TRAIN,
                                         name=FLAGS.dataset,
                                         batch_size=FLAGS.per_core_batch_size,
                                         use_bfloat16=FLAGS.use_bfloat16)
    clean_test_input_fn = utils.load_input_fn(
        split=tfds.Split.TEST,
        name=FLAGS.dataset,
        batch_size=FLAGS.per_core_batch_size,
        use_bfloat16=FLAGS.use_bfloat16)
    train_dataset = strategy.experimental_distribute_datasets_from_function(
        train_input_fn)
    test_datasets = {
        'clean':
        strategy.experimental_distribute_datasets_from_function(
            clean_test_input_fn),
    }
    if FLAGS.corruptions_interval > 0:
        if FLAGS.dataset == 'cifar10':
            load_c_input_fn = utils.load_cifar10_c_input_fn
        else:
            load_c_input_fn = functools.partial(utils.load_cifar100_c_input_fn,
                                                path=FLAGS.cifar100_c_path)
        corruption_types, max_intensity = utils.load_corrupted_test_info(
            FLAGS.dataset)
        for corruption in corruption_types:
            for intensity in range(1, max_intensity + 1):
                input_fn = load_c_input_fn(
                    corruption_name=corruption,
                    corruption_intensity=intensity,
                    batch_size=FLAGS.per_core_batch_size,
                    use_bfloat16=FLAGS.use_bfloat16)
                test_datasets['{0}_{1}'.format(corruption, intensity)] = (
                    strategy.experimental_distribute_datasets_from_function(
                        input_fn))

    ds_info = tfds.builder(FLAGS.dataset).info
    batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores
    steps_per_epoch = ds_info.splits['train'].num_examples // batch_size
    steps_per_eval = ds_info.splits['test'].num_examples // batch_size
    num_classes = ds_info.features['label'].num_classes

    if FLAGS.use_bfloat16:
        policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16')
        tf.keras.mixed_precision.experimental.set_policy(policy)

    summary_writer = tf.summary.create_file_writer(
        os.path.join(FLAGS.output_dir, 'summaries'))

    with strategy.scope():
        logging.info('Building ResNet model')
        model = wide_resnet(input_shape=ds_info.features['image'].shape,
                            depth=28,
                            width_multiplier=10,
                            num_classes=num_classes,
                            l2=FLAGS.l2,
                            dropout_rate=FLAGS.dropout_rate)
        logging.info('Model input shape: %s', model.input_shape)
        logging.info('Model output shape: %s', model.output_shape)
        logging.info('Model number of weights: %s', model.count_params())
        # Linearly scale learning rate and the decay epochs by vanilla settings.
        base_lr = FLAGS.base_learning_rate * batch_size / 128
        lr_decay_epochs = [(int(start_epoch_str) * FLAGS.train_epochs) // 200
                           for start_epoch_str in FLAGS.lr_decay_epochs]
        lr_schedule = utils.LearningRateSchedule(
            steps_per_epoch,
            base_lr,
            decay_ratio=FLAGS.lr_decay_ratio,
            decay_epochs=lr_decay_epochs,
            warmup_epochs=FLAGS.lr_warmup_epochs)
        optimizer = tf.keras.optimizers.SGD(lr_schedule,
                                            momentum=0.9,
                                            nesterov=True)
        metrics = {
            'train/negative_log_likelihood':
            tf.keras.metrics.Mean(),
            'train/accuracy':
            tf.keras.metrics.SparseCategoricalAccuracy(),
            'train/loss':
            tf.keras.metrics.Mean(),
            'train/ece':
            ed.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
            'test/negative_log_likelihood':
            tf.keras.metrics.Mean(),
            'test/accuracy':
            tf.keras.metrics.SparseCategoricalAccuracy(),
            'test/ece':
            ed.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
        }
        if FLAGS.corruptions_interval > 0:
            corrupt_metrics = {}
            for intensity in range(1, max_intensity + 1):
                for corruption in corruption_types:
                    dataset_name = '{0}_{1}'.format(corruption, intensity)
                    corrupt_metrics['test/nll_{}'.format(dataset_name)] = (
                        tf.keras.metrics.Mean())
                    corrupt_metrics['test/accuracy_{}'.format(
                        dataset_name)] = (
                            tf.keras.metrics.SparseCategoricalAccuracy())
                    corrupt_metrics['test/ece_{}'.format(dataset_name)] = (
                        ed.metrics.ExpectedCalibrationError(
                            num_bins=FLAGS.num_bins))

        checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
        latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
        initial_epoch = 0
        if latest_checkpoint:
            # checkpoint.restore must be within a strategy.scope() so that optimizer
            # slot variables are mirrored.
            checkpoint.restore(latest_checkpoint)
            logging.info('Loaded checkpoint %s', latest_checkpoint)
            initial_epoch = optimizer.iterations.numpy() // steps_per_epoch

    @tf.function
    def train_step(iterator):
        """Training StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            with tf.GradientTape() as tape:
                logits = model(images, training=True)
                if FLAGS.use_bfloat16:
                    logits = tf.cast(logits, tf.float32)
                negative_log_likelihood = tf.reduce_mean(
                    tf.keras.losses.sparse_categorical_crossentropy(
                        labels, logits, from_logits=True))
                l2_loss = sum(model.losses)
                loss = negative_log_likelihood + l2_loss
                # Scale the loss given the TPUStrategy will reduce sum all gradients.
                scaled_loss = loss / strategy.num_replicas_in_sync

            grads = tape.gradient(scaled_loss, model.trainable_variables)
            optimizer.apply_gradients(zip(grads, model.trainable_variables))

            probs = tf.nn.softmax(logits)
            metrics['train/ece'].update_state(labels, probs)
            metrics['train/loss'].update_state(loss)
            metrics['train/negative_log_likelihood'].update_state(
                negative_log_likelihood)
            metrics['train/accuracy'].update_state(labels, logits)

        strategy.run(step_fn, args=(next(iterator), ))

    @tf.function
    def test_step(iterator, dataset_name):
        """Evaluation StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs

            logits_list = []
            for _ in range(FLAGS.num_dropout_samples):
                logits = model(images, training=False)
                if FLAGS.use_bfloat16:
                    logits = tf.cast(logits, tf.float32)
                logits_list.append(logits)

            # Logits dimension is (num_samples, batch_size, num_classes).
            logits_list = tf.stack(logits_list, axis=0)
            probs_list = tf.nn.softmax(logits_list)
            probs = tf.reduce_mean(probs_list, axis=0)

            negative_log_likelihood = tf.reduce_mean(
                tf.keras.losses.sparse_categorical_crossentropy(labels, probs))

            if dataset_name == 'clean':
                metrics['test/negative_log_likelihood'].update_state(
                    negative_log_likelihood)
                metrics['test/accuracy'].update_state(labels, probs)
                metrics['test/ece'].update_state(labels, probs)
            else:
                corrupt_metrics['test/nll_{}'.format(
                    dataset_name)].update_state(negative_log_likelihood)
                corrupt_metrics['test/accuracy_{}'.format(
                    dataset_name)].update_state(labels, probs)
                corrupt_metrics['test/ece_{}'.format(
                    dataset_name)].update_state(labels, probs)

        strategy.run(step_fn, args=(next(iterator), ))

    train_iterator = iter(train_dataset)
    start_time = time.time()
    for epoch in range(initial_epoch, FLAGS.train_epochs):
        logging.info('Starting to run epoch: %s', epoch)
        for step in range(steps_per_epoch):
            train_step(train_iterator)

            current_step = epoch * steps_per_epoch + (step + 1)
            max_steps = steps_per_epoch * FLAGS.train_epochs
            time_elapsed = time.time() - start_time
            steps_per_sec = float(current_step) / time_elapsed
            eta_seconds = (max_steps - current_step) / steps_per_sec
            message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
                       'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                           current_step / max_steps, epoch + 1,
                           FLAGS.train_epochs, steps_per_sec, eta_seconds / 60,
                           time_elapsed / 60))
            if step % 20 == 0:
                logging.info(message)

        datasets_to_evaluate = {'clean': test_datasets['clean']}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            datasets_to_evaluate = test_datasets
        for dataset_name, test_dataset in datasets_to_evaluate.items():
            test_iterator = iter(test_dataset)
            logging.info('Testing on dataset %s', dataset_name)
            for step in range(steps_per_eval):
                if step % 20 == 0:
                    logging.info('Starting to run eval step %s of epoch: %s',
                                 step, epoch)
                test_step(test_iterator, dataset_name)
            logging.info('Done with testing on %s', dataset_name)

        corrupt_results = {}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            corrupt_results = utils.aggregate_corrupt_metrics(
                corrupt_metrics, corruption_types, max_intensity)

        logging.info('Train Loss: %.4f, Accuracy: %.2f%%',
                     metrics['train/loss'].result(),
                     metrics['train/accuracy'].result() * 100)
        logging.info('Test NLL: %.4f, Accuracy: %.2f%%',
                     metrics['test/negative_log_likelihood'].result(),
                     metrics['test/accuracy'].result() * 100)
        total_results = {
            name: metric.result()
            for name, metric in metrics.items()
        }
        total_results.update(corrupt_results)
        with summary_writer.as_default():
            for name, result in total_results.items():
                tf.summary.scalar(name, result, step=epoch + 1)

        for metric in metrics.values():
            metric.reset_states()

        if (FLAGS.checkpoint_interval > 0
                and (epoch + 1) % FLAGS.checkpoint_interval == 0):
            checkpoint_name = checkpoint.save(
                os.path.join(FLAGS.output_dir, 'checkpoint'))
            logging.info('Saved checkpoint to %s', checkpoint_name)
    final_checkpoint_name = checkpoint.save(
        os.path.join(FLAGS.output_dir, 'checkpoint'))
    logging.info('Saved last checkpoint to %s', final_checkpoint_name)
Exemplo n.º 6
0
def main(argv):
    del argv  # unused arg

    tf.io.gfile.makedirs(FLAGS.output_dir)
    logging.info('Saving checkpoints at %s', FLAGS.output_dir)
    tf.random.set_seed(FLAGS.seed)

    per_core_batch_size = FLAGS.per_core_batch_size // FLAGS.ensemble_size
    batch_size = per_core_batch_size * FLAGS.num_cores
    steps_per_epoch = APPROX_IMAGENET_TRAIN_IMAGES // batch_size
    steps_per_eval = IMAGENET_VALIDATION_IMAGES // batch_size

    if FLAGS.use_gpu:
        logging.info('Use GPU')
        strategy = tf.distribute.MirroredStrategy()
    else:
        logging.info('Use TPU at %s',
                     FLAGS.tpu if FLAGS.tpu is not None else 'local')
        resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
            tpu=FLAGS.tpu)
        tf.config.experimental_connect_to_cluster(resolver)
        tf.tpu.experimental.initialize_tpu_system(resolver)
        strategy = tf.distribute.TPUStrategy(resolver)

    builder = utils.ImageNetInput(data_dir=FLAGS.data_dir,
                                  use_bfloat16=FLAGS.use_bfloat16)
    train_dataset = builder.as_dataset(split=tfds.Split.TRAIN,
                                       batch_size=batch_size)
    clean_test_dataset = builder.as_dataset(split=tfds.Split.TEST,
                                            batch_size=batch_size)
    train_dataset = strategy.experimental_distribute_dataset(train_dataset)
    test_datasets = {
        'clean': strategy.experimental_distribute_dataset(clean_test_dataset)
    }
    if FLAGS.corruptions_interval > 0:
        corruption_types, max_intensity = utils.load_corrupted_test_info()
        for name in corruption_types:
            for intensity in range(1, max_intensity + 1):
                dataset_name = '{0}_{1}'.format(name, intensity)
                dataset = utils.load_corrupted_test_dataset(
                    batch_size=batch_size,
                    corruption_name=name,
                    corruption_intensity=intensity,
                    use_bfloat16=FLAGS.use_bfloat16)
                test_datasets[dataset_name] = (
                    strategy.experimental_distribute_dataset(dataset))

    if FLAGS.use_bfloat16:
        policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16')
        tf.keras.mixed_precision.experimental.set_policy(policy)

    with strategy.scope():
        logging.info('Building Keras ResNet-50 model')
        model = ub.models.resnet50_sngp_be(
            input_shape=(224, 224, 3),
            batch_size=batch_size,
            num_classes=NUM_CLASSES,
            ensemble_size=FLAGS.ensemble_size,
            random_sign_init=FLAGS.random_sign_init,
            use_ensemble_bn=FLAGS.use_ensemble_bn,
            use_gp_layer=FLAGS.use_gp_layer,
            gp_hidden_dim=FLAGS.gp_hidden_dim,
            gp_scale=FLAGS.gp_scale,
            gp_bias=FLAGS.gp_bias,
            gp_input_normalization=FLAGS.gp_input_normalization,
            gp_cov_discount_factor=FLAGS.gp_cov_discount_factor,
            gp_cov_ridge_penalty=FLAGS.gp_cov_ridge_penalty,
            gp_output_imagenet_initializer=FLAGS.
            gp_output_imagenet_initializer,
            use_spec_norm=FLAGS.use_spec_norm,
            spec_norm_iteration=FLAGS.spec_norm_iteration,
            spec_norm_bound=FLAGS.spec_norm_bound,
            input_spec_norm=FLAGS.input_spec_norm)
        logging.info('Model input shape: %s', model.input_shape)
        logging.info('Model output shape: %s', model.output_shape)
        logging.info('Model number of weights: %s', model.count_params())
        # Scale learning rate and decay epochs by vanilla settings.
        base_lr = FLAGS.base_learning_rate * batch_size / 256
        decay_epochs = [
            (FLAGS.train_epochs * 30) // 90,
            (FLAGS.train_epochs * 60) // 90,
            (FLAGS.train_epochs * 80) // 90,
        ]
        learning_rate = ub.schedules.WarmUpPiecewiseConstantSchedule(
            steps_per_epoch=steps_per_epoch,
            base_learning_rate=base_lr,
            decay_ratio=0.1,
            decay_epochs=decay_epochs,
            warmup_epochs=5)
        optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate,
                                            momentum=1.0 -
                                            FLAGS.one_minus_momentum,
                                            nesterov=True)
        metrics = {
            'train/negative_log_likelihood':
            tf.keras.metrics.Mean(),
            'train/accuracy':
            tf.keras.metrics.SparseCategoricalAccuracy(),
            'train/loss':
            tf.keras.metrics.Mean(),
            'train/ece':
            rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
            'test/negative_log_likelihood':
            tf.keras.metrics.Mean(),
            'test/accuracy':
            tf.keras.metrics.SparseCategoricalAccuracy(),
            'test/ece':
            rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
            'test/stddev':
            tf.keras.metrics.Mean(),
            'test/member_accuracy_mean':
            (tf.keras.metrics.SparseCategoricalAccuracy()),
            'test/member_ece_mean':
            rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins)
        }
        if FLAGS.corruptions_interval > 0:
            corrupt_metrics = {}
            for intensity in range(1, max_intensity + 1):
                for corruption in corruption_types:
                    dataset_name = '{0}_{1}'.format(corruption, intensity)
                    corrupt_metrics['test/nll_{}'.format(dataset_name)] = (
                        tf.keras.metrics.Mean())
                    corrupt_metrics['test/accuracy_{}'.format(
                        dataset_name)] = (
                            tf.keras.metrics.SparseCategoricalAccuracy())
                    corrupt_metrics['test/ece_{}'.format(dataset_name)] = (
                        rm.metrics.ExpectedCalibrationError(
                            num_bins=FLAGS.num_bins))
                    corrupt_metrics['test/stddev_{}'.format(dataset_name)] = (
                        tf.keras.metrics.Mean())
                    corrupt_metrics['test/member_acc_mean_{}'.format(
                        dataset_name)] = (
                            tf.keras.metrics.SparseCategoricalAccuracy())
                    corrupt_metrics['test/member_ece_mean_{}'.format(
                        dataset_name)] = (rm.metrics.ExpectedCalibrationError(
                            num_bins=FLAGS.num_bins))

        for i in range(FLAGS.ensemble_size):
            metrics['test/nll_member_{}'.format(i)] = tf.keras.metrics.Mean()
            metrics['test/accuracy_member_{}'.format(i)] = (
                tf.keras.metrics.SparseCategoricalAccuracy())

        logging.info('Finished building Keras ResNet-50 model')

        checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
        latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
        initial_epoch = 0
        if latest_checkpoint:
            # checkpoint.restore must be within a strategy.scope() so that optimizer
            # slot variables are mirrored.
            checkpoint.restore(latest_checkpoint)
            logging.info('Loaded checkpoint %s', latest_checkpoint)
            initial_epoch = optimizer.iterations.numpy() // steps_per_epoch

    summary_writer = tf.summary.create_file_writer(
        os.path.join(FLAGS.output_dir, 'summaries'))

    @tf.function
    def train_step(iterator):
        """Training StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs
            images = tf.tile(images, [FLAGS.ensemble_size, 1, 1, 1])
            labels = tf.tile(labels, [FLAGS.ensemble_size])
            with tf.GradientTape() as tape:
                logits = model(images, training=True)

                if isinstance(logits, (list, tuple)):
                    # If model returns a tuple of (logits, covmat), extract logits
                    logits, _ = logits
                if FLAGS.use_bfloat16:
                    logits = tf.cast(logits, tf.float32)

                negative_log_likelihood = tf.reduce_mean(
                    tf.keras.losses.sparse_categorical_crossentropy(
                        labels, logits, from_logits=True))
                filtered_variables = []
                for var in model.trainable_variables:
                    # Apply l2 on the weights. This excludes BN parameters and biases, but
                    # pay caution to their naming scheme.
                    if 'kernel' in var.name or 'bias' in var.name:
                        filtered_variables.append(tf.reshape(var, (-1, )))

                l2_loss = FLAGS.l2 * 2 * tf.nn.l2_loss(
                    tf.concat(filtered_variables, axis=0))
                # Scale the loss given the TPUStrategy will reduce sum all gradients.
                loss = negative_log_likelihood + l2_loss
                scaled_loss = loss / strategy.num_replicas_in_sync

            grads = tape.gradient(scaled_loss, model.trainable_variables)
            if FLAGS.fast_weight_lr_multiplier != 1.0:
                grads_and_vars = []
                for grad, var in zip(grads, model.trainable_variables):
                    # Apply different learning rate on the fast weights. This excludes BN
                    # and slow weights, but pay caution to the naming scheme.
                    if ('batch_norm' not in var.name
                            and 'kernel' not in var.name):
                        grads_and_vars.append(
                            (grad * FLAGS.fast_weight_lr_multiplier, var))
                    else:
                        grads_and_vars.append((grad, var))
                optimizer.apply_gradients(grads_and_vars)
            else:
                optimizer.apply_gradients(zip(grads,
                                              model.trainable_variables))

            probs = tf.nn.softmax(logits)
            metrics['train/ece'].add_batch(probs, label=labels)
            metrics['train/loss'].update_state(loss)
            metrics['train/negative_log_likelihood'].update_state(
                negative_log_likelihood)
            metrics['train/accuracy'].update_state(labels, logits)

        for _ in tf.range(tf.cast(steps_per_epoch, tf.int32)):
            strategy.run(step_fn, args=(next(iterator), ))

    @tf.function
    def test_step(iterator, dataset_name):
        """Evaluation StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images, labels = inputs

            logits_list = []
            stddev_list = []
            for _ in range(FLAGS.ensemble_size):
                logits = model(images, training=False)

                if isinstance(logits, (list, tuple)):
                    # If model returns a tuple of (logits, covmat), extract both
                    logits, covmat = logits
                else:
                    covmat = tf.eye(FLAGS.per_core_batch_size)

                if FLAGS.use_bfloat16:
                    logits = tf.cast(logits, tf.float32)

                logits = ed.layers.utils.mean_field_logits(
                    logits,
                    covmat,
                    mean_field_factor=FLAGS.gp_mean_field_factor)
                stddev = tf.sqrt(tf.linalg.diag_part(covmat))

                stddev_list.append(stddev)
                logits_list.append(logits)
                member_probs = tf.nn.softmax(logits)
                member_loss = tf.keras.losses.sparse_categorical_crossentropy(
                    labels, member_probs)
                metrics['test/nll_member_{}'.format(i)].update_state(
                    member_loss)
                metrics['test/accuracy_member_{}'.format(i)].update_state(
                    labels, member_probs)
                metrics['test/member_accuracy_mean'].update_state(
                    labels, member_probs)
                metrics['test/member_ece_mean'].update_state(
                    labels, member_probs)

            # Logits dimension is (num_samples, batch_size, num_classes).
            logits_list = tf.stack(logits_list, axis=0)
            stddev_list = tf.stack(stddev_list, axis=0)

            stddev = tf.reduce_mean(stddev_list, axis=0)
            probs_list = tf.nn.softmax(logits_list)
            probs = tf.reduce_mean(probs_list, axis=0)

            labels_broadcasted = tf.broadcast_to(
                labels, [FLAGS.ensemble_size, labels.shape[0]])
            log_likelihoods = -tf.keras.losses.sparse_categorical_crossentropy(
                labels_broadcasted, logits_list, from_logits=True)
            negative_log_likelihood = tf.reduce_mean(
                -tf.reduce_logsumexp(log_likelihoods, axis=[0]) +
                tf.math.log(float(FLAGS.ensemble_size)))

            if dataset_name == 'clean':
                metrics['test/negative_log_likelihood'].update_state(
                    negative_log_likelihood)
                metrics['test/accuracy'].update_state(labels, probs)
                metrics['test/ece'].add_batch(probs, label=labels)
                metrics['test/stddev'].update_state(stddev)
            else:
                corrupt_metrics['test/nll_{}'.format(
                    dataset_name)].update_state(negative_log_likelihood)
                corrupt_metrics['test/accuracy_{}'.format(
                    dataset_name)].update_state(labels, probs)
                corrupt_metrics['test/ece_{}'.format(dataset_name)].add_batch(
                    probs, label=labels)
                corrupt_metrics['test/stddev_{}'.format(
                    dataset_name)].update_state(stddev)

        for _ in tf.range(tf.cast(steps_per_eval, tf.int32)):
            strategy.run(step_fn, args=(next(iterator), ))

    metrics.update({'test/ms_per_example': tf.keras.metrics.Mean()})

    train_iterator = iter(train_dataset)
    start_time = time.time()
    for epoch in range(initial_epoch, FLAGS.train_epochs):
        logging.info('Starting to run epoch: %s', epoch)
        train_step(train_iterator)

        current_step = (epoch + 1) * steps_per_epoch
        max_steps = steps_per_epoch * FLAGS.train_epochs
        time_elapsed = time.time() - start_time
        steps_per_sec = float(current_step) / time_elapsed
        eta_seconds = (max_steps - current_step) / steps_per_sec
        message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
                   'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                       current_step / max_steps, epoch + 1, FLAGS.train_epochs,
                       steps_per_sec, eta_seconds / 60, time_elapsed / 60))
        logging.info(message)

        datasets_to_evaluate = {'clean': test_datasets['clean']}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            datasets_to_evaluate = test_datasets
        for dataset_name, test_dataset in datasets_to_evaluate.items():
            test_iterator = iter(test_dataset)
            logging.info('Testing on dataset %s', dataset_name)
            logging.info('Starting to run eval at epoch: %s', epoch)
            test_start_time = time.time()
            test_step(test_iterator, dataset_name)
            ms_per_example = (time.time() - test_start_time) * 1e6 / batch_size
            metrics['test/ms_per_example'].update_state(ms_per_example)

            logging.info('Done with testing on %s', dataset_name)

        corrupt_results = {}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            corrupt_results = utils.aggregate_corrupt_metrics(
                corrupt_metrics, corruption_types, max_intensity,
                FLAGS.alexnet_errors_path)

        logging.info('Train Loss: %.4f, Accuracy: %.2f%%',
                     metrics['train/loss'].result(),
                     metrics['train/accuracy'].result() * 100)
        logging.info('Test NLL: %.4f, Accuracy: %.2f%%',
                     metrics['test/negative_log_likelihood'].result(),
                     metrics['test/accuracy'].result() * 100)
        for i in range(FLAGS.ensemble_size):
            logging.info(
                'Member %d Test Loss: %.4f, Accuracy: %.2f%%', i,
                metrics['test/nll_member_{}'.format(i)].result(),
                metrics['test/accuracy_member_{}'.format(i)].result() * 100)

        total_results = {
            name: metric.result()
            for name, metric in metrics.items()
        }
        total_results.update(corrupt_results)
        # Metrics from Robustness Metrics (like ECE) will return a dict with a
        # single key/value, instead of a scalar.
        total_results = {
            k: (list(v.values())[0] if isinstance(v, dict) else v)
            for k, v in total_results.items()
        }
        with summary_writer.as_default():
            for name, result in total_results.items():
                tf.summary.scalar(name, result, step=epoch + 1)

        for metric in metrics.values():
            metric.reset_states()

        if (FLAGS.checkpoint_interval > 0
                and (epoch + 1) % FLAGS.checkpoint_interval == 0):
            checkpoint_name = checkpoint.save(
                os.path.join(FLAGS.output_dir, 'checkpoint'))
            logging.info('Saved checkpoint to %s', checkpoint_name)

    # TODO(jereliu): Convert to use SavedModel after fixing the graph-mode
    # execution bug in SpectralNormalizationConv2D which blocks the model.save()
    # functionality.
    final_checkpoint_name = checkpoint.save(
        os.path.join(FLAGS.output_dir, 'checkpoint'))
    logging.info('Saved last checkpoint to %s', final_checkpoint_name)
    with summary_writer.as_default():
        hp.hparams({
            'base_learning_rate': FLAGS.base_learning_rate,
            'one_minus_momentum': FLAGS.one_minus_momentum,
            'l2': FLAGS.l2,
            'gp_mean_field_factor': FLAGS.gp_mean_field_factor,
            'gp_scale': FLAGS.gp_scale,
            'gp_hidden_dim': FLAGS.gp_hidden_dim,
            'fast_weight_lr_multiplier': FLAGS.fast_weight_lr_multiplier,
            'random_sign_init': FLAGS.random_sign_init,
        })
Exemplo n.º 7
0
def main(argv):
    del argv  # unused arg
    tf.io.gfile.makedirs(FLAGS.output_dir)
    logging.info('Saving checkpoints at %s', FLAGS.output_dir)
    tf.random.set_seed(FLAGS.seed)

    if FLAGS.use_gpu:
        logging.info('Use GPU')
        strategy = tf.distribute.MirroredStrategy()
    else:
        logging.info('Use TPU at %s',
                     FLAGS.tpu if FLAGS.tpu is not None else 'local')
        resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
            tpu=FLAGS.tpu)
        tf.config.experimental_connect_to_cluster(resolver)
        tf.tpu.experimental.initialize_tpu_system(resolver)
        strategy = tf.distribute.TPUStrategy(resolver)

    ds_info = tfds.builder(FLAGS.dataset).info
    batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores
    test_batch_size = FLAGS.per_core_batch_size * FLAGS.num_cores
    steps_per_epoch = ds_info.splits['train'].num_examples // batch_size
    steps_per_eval = ds_info.splits['test'].num_examples // test_batch_size
    num_classes = ds_info.features['label'].num_classes

    if FLAGS.dataset == 'cifar10':
        dataset_builder_class = ub.datasets.Cifar10Dataset
    else:
        dataset_builder_class = ub.datasets.Cifar100Dataset
    train_dataset_builder = dataset_builder_class(
        split=tfds.Split.TRAIN, use_bfloat16=FLAGS.use_bfloat16)
    train_dataset = train_dataset_builder.load(batch_size=batch_size)
    train_dataset = strategy.experimental_distribute_dataset(train_dataset)
    clean_test_dataset_builder = dataset_builder_class(
        split=tfds.Split.TEST, use_bfloat16=FLAGS.use_bfloat16)
    clean_test_dataset = clean_test_dataset_builder.load(
        batch_size=test_batch_size)
    test_datasets = {
        'clean': strategy.experimental_distribute_dataset(clean_test_dataset),
    }
    if FLAGS.corruptions_interval > 0:
        if FLAGS.dataset == 'cifar10':
            load_c_dataset = utils.load_cifar10_c
        else:
            load_c_dataset = functools.partial(utils.load_cifar100_c,
                                               path=FLAGS.cifar100_c_path)
        corruption_types, max_intensity = utils.load_corrupted_test_info(
            FLAGS.dataset)
        for corruption in corruption_types:
            for intensity in range(1, max_intensity + 1):
                dataset = load_c_dataset(corruption_name=corruption,
                                         corruption_intensity=intensity,
                                         batch_size=test_batch_size,
                                         use_bfloat16=FLAGS.use_bfloat16)
                test_datasets['{0}_{1}'.format(corruption, intensity)] = (
                    strategy.experimental_distribute_dataset(dataset))

    if FLAGS.use_bfloat16:
        policy = tf.keras.mixed_precision.experimental.Policy('mixed_bfloat16')
        tf.keras.mixed_precision.experimental.set_policy(policy)

    summary_writer = tf.summary.create_file_writer(
        os.path.join(FLAGS.output_dir, 'summaries'))

    with strategy.scope():
        logging.info('Building ResNet model')
        model = ub.models.wide_resnet_condconv(
            input_shape=ds_info.features['image'].shape,
            depth=28,
            width_multiplier=FLAGS.resnet_width_multiplier,
            num_classes=num_classes,
            num_experts=FLAGS.num_experts,
            per_core_batch_size=FLAGS.per_core_batch_size,
            use_cond_dense=FLAGS.use_cond_dense,
            reduce_dense_outputs=FLAGS.reduce_dense_outputs,
            cond_placement=FLAGS.cond_placement,
            routing_fn=FLAGS.routing_fn,
            normalize_routing=FLAGS.normalize_routing,
            normalize_dense_routing=FLAGS.normalize_dense_routing,
            top_k=FLAGS.top_k,
            routing_pooling=FLAGS.routing_pooling,
            l2=FLAGS.l2)
        # reuse_routing=FLAGS.reuse_routing,
        # shared_routing_type=FLAGS.shared_routing_type)
        logging.info('Model input shape: %s', model.input_shape)
        logging.info('Model output shape: %s', model.output_shape)
        logging.info('Model number of weights: %s', model.count_params())
        # Linearly scale learning rate and the decay epochs by vanilla settings.
        base_lr = FLAGS.base_learning_rate * batch_size / 128
        lr_decay_epochs = [(int(start_epoch_str) * FLAGS.train_epochs) // 200
                           for start_epoch_str in FLAGS.lr_decay_epochs]
        lr_schedule = ub.schedules.WarmUpPiecewiseConstantSchedule(
            steps_per_epoch,
            base_lr,
            decay_ratio=FLAGS.lr_decay_ratio,
            decay_epochs=lr_decay_epochs,
            warmup_epochs=FLAGS.lr_warmup_epochs)
        optimizer = tf.keras.optimizers.SGD(lr_schedule,
                                            momentum=1.0 -
                                            FLAGS.one_minus_momentum,
                                            nesterov=True)
        metrics = {
            'train/negative_log_likelihood':
            tf.keras.metrics.Mean(),
            'train/accuracy':
            tf.keras.metrics.SparseCategoricalAccuracy(),
            'train/loss':
            tf.keras.metrics.Mean(),
            'train/ece':
            rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
            'test/negative_log_likelihood':
            tf.keras.metrics.Mean(),
            'test/accuracy':
            tf.keras.metrics.SparseCategoricalAccuracy(),
            'test/ece':
            rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
        }
        if not FLAGS.reduce_dense_outputs and FLAGS.use_cond_dense:
            metrics.update({
                'test/nll_poe':
                tf.keras.metrics.Mean(),
                'test/nll_moe':
                tf.keras.metrics.Mean(),
                'test/nll_unweighted_poe':
                tf.keras.metrics.Mean(),
                'test/nll_unweighted_moe':
                tf.keras.metrics.Mean(),
                'test/unweighted_gibbs_ce':
                tf.keras.metrics.Mean(),
                'test/ece_unweighted_moe':
                rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
                'test/accuracy_unweighted_moe':
                tf.keras.metrics.SparseCategoricalAccuracy(),
                'test/ece_poe':
                rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
                'test/accuracy_poe':
                tf.keras.metrics.SparseCategoricalAccuracy(),
                'test/ece_unweighted_poe':
                rm.metrics.ExpectedCalibrationError(num_bins=FLAGS.num_bins),
                'test/accuracy_unweighted_poe':
                tf.keras.metrics.SparseCategoricalAccuracy(),
            })
            for idx in range(FLAGS.num_experts):
                metrics['test/dense_routing_weight_{}'.format(
                    idx)] = tf.keras.metrics.Mean()
                metrics['test/dense_routing_weight_normalized_{}'.format(
                    idx)] = tf.keras.metrics.Mean()

        if FLAGS.corruptions_interval > 0:
            corrupt_metrics = {}
            for intensity in range(1, max_intensity + 1):
                for corruption in corruption_types:
                    dataset_name = '{0}_{1}'.format(corruption, intensity)
                    corrupt_metrics['test/nll_{}'.format(dataset_name)] = (
                        tf.keras.metrics.Mean())
                    corrupt_metrics['test/accuracy_{}'.format(
                        dataset_name)] = (
                            tf.keras.metrics.SparseCategoricalAccuracy())
                    corrupt_metrics['test/ece_{}'.format(dataset_name)] = (
                        rm.metrics.ExpectedCalibrationError(
                            num_bins=FLAGS.num_bins))
                    corrupt_metrics['test/nll_weighted_moe_{}'.format(
                        dataset_name)] = (tf.keras.metrics.Mean())
                    corrupt_metrics['test/accuracy_weighted_moe_{}'.format(
                        dataset_name)] = (
                            tf.keras.metrics.SparseCategoricalAccuracy())
                    corrupt_metrics['test/ece_weighted_moe_{}'.format(
                        dataset_name)] = (rm.metrics.ExpectedCalibrationError(
                            num_bins=FLAGS.num_bins))

        checkpoint = tf.train.Checkpoint(model=model, optimizer=optimizer)
        latest_checkpoint = tf.train.latest_checkpoint(FLAGS.output_dir)
        initial_epoch = 0
        if latest_checkpoint:
            # checkpoint.restore must be within a strategy.scope() so that optimizer
            # slot variables are mirrored.
            checkpoint.restore(latest_checkpoint)
            logging.info('Loaded checkpoint %s', latest_checkpoint)
            initial_epoch = optimizer.iterations.numpy() // steps_per_epoch

    def _process_3d_logits(logits, routing_weights, labels):
        routing_weights_3d = tf.expand_dims(routing_weights, axis=-1)
        weighted_logits = tf.math.reduce_mean(routing_weights_3d * logits,
                                              axis=1)
        unweighted_logits = tf.math.reduce_mean(logits, axis=1)

        probs = tf.nn.softmax(logits)
        unweighted_probs = tf.math.reduce_mean(probs, axis=1)
        weighted_probs = tf.math.reduce_sum(routing_weights_3d * probs, axis=1)

        labels_broadcasted = tf.tile(tf.reshape(labels, (-1, 1)),
                                     (1, FLAGS.num_experts))
        neg_log_likelihoods = tf.keras.losses.sparse_categorical_crossentropy(
            labels_broadcasted, logits, from_logits=True)
        unweighted_gibbs_ce = tf.math.reduce_mean(neg_log_likelihoods)
        weighted_gibbs_ce = tf.math.reduce_mean(
            tf.math.reduce_sum(routing_weights * neg_log_likelihoods, axis=1))
        return {
            'weighted_logits': weighted_logits,
            'unweighted_logits': unweighted_logits,
            'unweighted_probs': unweighted_probs,
            'weighted_probs': weighted_probs,
            'neg_log_likelihoods': neg_log_likelihoods,
            'unweighted_gibbs_ce': unweighted_gibbs_ce,
            'weighted_gibbs_ce': weighted_gibbs_ce
        }

    def _process_3d_logits_train(logits, routing_weights, labels):
        processing_results = _process_3d_logits(logits, routing_weights,
                                                labels)
        if FLAGS.loss == 'gibbs_ce':
            probs = processing_results['weighted_probs']
            negative_log_likelihood = processing_results['weighted_gibbs_ce']
        elif FLAGS.loss == 'unweighted_gibbs_ce':
            probs = processing_results['unweighted_probs']
            negative_log_likelihood = processing_results['unweighted_gibbs_ce']
        elif FLAGS.loss == 'moe':
            probs = processing_results['weighted_probs']
            negative_log_likelihood = tf.math.reduce_mean(
                tf.keras.losses.sparse_categorical_crossentropy(
                    labels, probs, from_logits=False))
        elif FLAGS.loss == 'unweighted_moe':
            probs = processing_results['unweighted_probs']
            negative_log_likelihood = tf.math.reduce_mean(
                tf.keras.losses.sparse_categorical_crossentropy(
                    labels, probs, from_logits=False))
        elif FLAGS.loss == 'poe':
            probs = tf.softmax(processing_results['weighted_logits'])
            negative_log_likelihood = tf.math.reduce_mean(
                tf.keras.losses.sparse_categorical_crossentropy(
                    labels,
                    processing_results['weighted_logits'],
                    from_logits=True))
        elif FLAGS.loss == 'unweighted_poe':
            probs = tf.softmax(processing_results['unweighted_logits'])
            negative_log_likelihood = tf.math.reduce_mean(
                tf.keras.losses.sparse_categorical_crossentropy(
                    labels,
                    processing_results['unweighted_logits'],
                    from_logits=True))
        return probs, negative_log_likelihood

    def _process_3d_logits_test(routing_weights, logits, labels):
        processing_results = _process_3d_logits(logits, routing_weights,
                                                labels)
        nll_poe = tf.math.reduce_mean(
            tf.keras.losses.sparse_categorical_crossentropy(
                labels,
                processing_results['weighted_logits'],
                from_logits=True))
        nll_unweighted_poe = tf.math.reduce_mean(
            tf.keras.losses.sparse_categorical_crossentropy(
                labels,
                processing_results['unweighted_logits'],
                from_logits=True))
        nll_moe = tf.math.reduce_mean(
            tf.keras.losses.sparse_categorical_crossentropy(
                labels,
                processing_results['weighted_probs'],
                from_logits=False))
        nll_unweighted_moe = tf.math.reduce_mean(
            tf.keras.losses.sparse_categorical_crossentropy(
                labels,
                processing_results['unweighted_probs'],
                from_logits=False))
        return {
            'nll_poe': nll_poe,
            'nll_moe': nll_moe,
            'nll_unweighted_poe': nll_unweighted_poe,
            'nll_unweighted_moe': nll_unweighted_moe,
            'unweighted_gibbs_ce': processing_results['unweighted_gibbs_ce'],
            'weighted_gibbs_ce': processing_results['weighted_gibbs_ce'],
            'weighted_probs': processing_results['weighted_probs'],
            'unweighted_probs': processing_results['unweighted_probs'],
            'weighted_logits': processing_results['weighted_logits'],
            'unweighted_logits': processing_results['unweighted_logits']
        }

    @tf.function
    def train_step(iterator):
        """Training StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images = inputs['features']
            labels = inputs['labels']
            with tf.GradientTape() as tape:
                logits = model(images, training=True)
                if FLAGS.use_bfloat16:
                    logits = tf.cast(logits, tf.float32)
                # if not FLAGS.reduce_dense_outputs and FLAGS.use_cond_dense:
                if not isinstance(logits, (list, tuple)):
                    raise ValueError('Logits are not a tuple.')
                # logits is a `Tensor` of shape [batch_size, num_experts, num_classes]
                logits, all_routing_weights = logits
                # routing_weights is a `Tensor` of shape [batch_size, num_experts]
                routing_weights = all_routing_weights[-1]
                if not FLAGS.reduce_dense_outputs and FLAGS.use_cond_dense:
                    probs, negative_log_likelihood = _process_3d_logits_train(
                        logits, routing_weights, labels)
                else:
                    probs = tf.nn.softmax(logits)
                    # Prior to reduce_mean the NLLs are of the shape [batch, num_experts].
                    negative_log_likelihood = tf.reduce_mean(
                        tf.keras.losses.sparse_categorical_crossentropy(
                            labels, logits, from_logits=True))

                l2_loss = sum(model.losses)
                loss = negative_log_likelihood + l2_loss
                # Scale the loss given the TPUStrategy will reduce sum all gradients.
                scaled_loss = loss / strategy.num_replicas_in_sync

            grads = tape.gradient(scaled_loss, model.trainable_variables)
            optimizer.apply_gradients(zip(grads, model.trainable_variables))

            metrics['train/ece'].add_batch(probs, label=labels)
            metrics['train/loss'].update_state(loss)
            metrics['train/negative_log_likelihood'].update_state(
                negative_log_likelihood)
            metrics['train/accuracy'].update_state(labels, probs)

        for _ in tf.range(tf.cast(steps_per_epoch, tf.int32)):
            strategy.run(step_fn, args=(next(iterator), ))

    @tf.function
    def test_step(iterator, dataset_name):
        """Evaluation StepFn."""
        def step_fn(inputs):
            """Per-Replica StepFn."""
            images = inputs['features']
            labels = inputs['labels']
            logits = model(images, training=False)
            if FLAGS.use_bfloat16:
                logits = tf.cast(logits, tf.float32)
            if not isinstance(logits, (list, tuple)):
                raise ValueError('Logits not a tuple')
            # logits is a `Tensor` of shape [batch_size, num_experts, num_classes]
            # routing_weights is a `Tensor` of shape [batch_size, num_experts]
            logits, all_routing_weights = logits
            routing_weights = all_routing_weights[-1]
            if not FLAGS.reduce_dense_outputs and FLAGS.use_cond_dense:
                results = _process_3d_logits_test(routing_weights, logits,
                                                  labels)
            else:
                probs = tf.nn.softmax(logits)
                negative_log_likelihood = tf.reduce_mean(
                    tf.keras.losses.sparse_categorical_crossentropy(
                        labels, probs))

            if dataset_name == 'clean':
                if not FLAGS.reduce_dense_outputs and FLAGS.use_cond_dense:
                    metrics['test/nll_poe'].update_state(results['nll_poe'])
                    metrics['test/nll_moe'].update_state(results['nll_moe'])
                    metrics['test/nll_unweighted_poe'].update_state(
                        results['nll_unweighted_poe'])
                    metrics['test/nll_unweighted_moe'].update_state(
                        results['nll_unweighted_moe'])
                    metrics['test/unweighted_gibbs_ce'].update_state(
                        results['unweighted_gibbs_ce'])
                    metrics['test/negative_log_likelihood'].update_state(
                        results['weighted_gibbs_ce'])
                    metrics['test/ece'].add_batch(results['weighted_probs'],
                                                  label=labels)
                    metrics['test/accuracy'].update_state(
                        labels, results['weighted_probs'])
                    metrics['test/ece_unweighted_moe'].add_batch(
                        results['unweighted_probs'], label=labels)
                    metrics['test/accuracy_unweighted_moe'].update_state(
                        labels, results['unweighted_probs'])
                    metrics['test/ece_poe'].add_batch(
                        results['weighted_logits'], label=labels)
                    metrics['test/accuracy_poe'].update_state(
                        labels, results['weighted_logits'])
                    metrics['test/ece_unweighted_poe'].add_batch(
                        results['unweighted_logits'], label=labels)
                    metrics['test/accuracy_unweighted_poe'].update_state(
                        labels, results['unweighted_logits'])
                    # TODO(ghassen): summarize all routing weights not only last layer's.
                    average_routing_weights = tf.math.reduce_mean(
                        routing_weights, axis=0)
                    routing_weights_sum = tf.math.reduce_sum(
                        average_routing_weights)
                    for idx in range(FLAGS.num_experts):
                        metrics['test/dense_routing_weight_{}'.format(
                            idx)].update_state(average_routing_weights[idx])
                        metrics['test/dense_routing_weight_normalized_{}'.
                                format(idx)].update_state(
                                    average_routing_weights[idx] /
                                    routing_weights_sum)
                    # TODO(ghassen): add more metrics for expert utilization,
                    # load loss and importance/balance loss.
                else:
                    metrics['test/negative_log_likelihood'].update_state(
                        negative_log_likelihood)
                    metrics['test/accuracy'].update_state(labels, probs)
                    metrics['test/ece'].add_batch(probs, label=labels)
            else:
                # TODO(ghassen): figure out how to aggregate probs for the OOD case.
                if not FLAGS.reduce_dense_outputs and FLAGS.use_cond_dense:
                    corrupt_metrics['test/nll_{}'.format(
                        dataset_name)].update_state(
                            results['unweighted_gibbs_ce'])
                    corrupt_metrics['test/accuracy_{}'.format(
                        dataset_name)].update_state(
                            labels, results['unweighted_probs'])
                    corrupt_metrics['test/ece_{}'.format(
                        dataset_name)].add_batch(results['unweighted_probs'],
                                                 label=labels)

                    corrupt_metrics['test/nll_weighted_moe{}'.format(
                        dataset_name)].update_state(
                            results['weighted_gibbs_ce'])
                    corrupt_metrics['test/accuracy_weighted_moe_{}'.format(
                        dataset_name)].update_state(labels,
                                                    results['weighted_probs'])
                    corrupt_metrics['test/ece_weighted_moe{}'.format(
                        dataset_name)].update_state(labels,
                                                    results['weighted_probs'])
                else:
                    corrupt_metrics['test/nll_{}'.format(
                        dataset_name)].update_state(negative_log_likelihood)
                    corrupt_metrics['test/accuracy_{}'.format(
                        dataset_name)].update_state(labels, probs)
                    corrupt_metrics['test/ece_{}'.format(
                        dataset_name)].update_state(labels, probs)

        for _ in tf.range(tf.cast(steps_per_eval, tf.int32)):
            strategy.run(step_fn, args=(next(iterator), ))

    metrics.update({'test/ms_per_example': tf.keras.metrics.Mean()})

    train_iterator = iter(train_dataset)
    start_time = time.time()
    for epoch in range(initial_epoch, FLAGS.train_epochs):
        logging.info('Starting to run epoch: %s', epoch)
        train_step(train_iterator)

        current_step = (epoch + 1) * steps_per_epoch
        max_steps = steps_per_epoch * FLAGS.train_epochs
        time_elapsed = time.time() - start_time
        steps_per_sec = float(current_step) / time_elapsed
        eta_seconds = (max_steps - current_step) / steps_per_sec
        message = ('{:.1%} completion: epoch {:d}/{:d}. {:.1f} steps/s. '
                   'ETA: {:.0f} min. Time elapsed: {:.0f} min'.format(
                       current_step / max_steps, epoch + 1, FLAGS.train_epochs,
                       steps_per_sec, eta_seconds / 60, time_elapsed / 60))
        logging.info(message)

        datasets_to_evaluate = {'clean': test_datasets['clean']}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            datasets_to_evaluate = test_datasets
        for dataset_name, test_dataset in datasets_to_evaluate.items():
            test_iterator = iter(test_dataset)
            logging.info('Testing on dataset %s', dataset_name)
            logging.info('Starting to run eval at epoch: %s', epoch)
            test_start_time = time.time()
            test_step(test_iterator, dataset_name)
            ms_per_example = (time.time() - test_start_time) * 1e6 / batch_size
            metrics['test/ms_per_example'].update_state(ms_per_example)

            logging.info('Done with testing on %s', dataset_name)

        corrupt_results = {}
        if (FLAGS.corruptions_interval > 0
                and (epoch + 1) % FLAGS.corruptions_interval == 0):
            corrupt_results = utils.aggregate_corrupt_metrics(
                corrupt_metrics, corruption_types, max_intensity)

        logging.info('Train Loss: %.4f, Accuracy: %.2f%%',
                     metrics['train/loss'].result(),
                     metrics['train/accuracy'].result() * 100)
        logging.info('Test NLL: %.4f, Accuracy: %.2f%%',
                     metrics['test/negative_log_likelihood'].result(),
                     metrics['test/accuracy'].result() * 100)
        total_results = {
            name: metric.result()
            for name, metric in metrics.items()
        }
        total_results.update(corrupt_results)
        # Metrics from Robustness Metrics (like ECE) will return a dict with a
        # single key/value, instead of a scalar.
        total_results = {
            k: (list(v.values())[0] if isinstance(v, dict) else v)
            for k, v in total_results.items()
        }
        with summary_writer.as_default():
            for name, result in total_results.items():
                tf.summary.scalar(name, result, step=epoch + 1)

        for metric in metrics.values():
            metric.reset_states()

        if (FLAGS.checkpoint_interval > 0
                and (epoch + 1) % FLAGS.checkpoint_interval == 0):
            checkpoint_name = checkpoint.save(
                os.path.join(FLAGS.output_dir, 'checkpoint'))
            logging.info('Saved checkpoint to %s', checkpoint_name)
    final_checkpoint_name = checkpoint.save(
        os.path.join(FLAGS.output_dir, 'checkpoint'))
    logging.info('Saved last checkpoint to %s', final_checkpoint_name)
    with summary_writer.as_default():
        hp.hparams({
            'base_learning_rate':
            FLAGS.base_learning_rate,
            'one_minus_momentum':
            FLAGS.one_minus_momentum,
            'l2':
            FLAGS.l2,
            'dropout_rate':
            FLAGS.dropout_rate,
            'num_dropout_samples':
            FLAGS.num_dropout_samples,
            'num_dropout_samples_training':
            FLAGS.num_dropout_samples_training,
        })