Exemplo n.º 1
0
def dithering(x, k, state, partition='linear', norm="max"):
    y = x.flatten()
    if norm == "max":
        scale = np.max(np.abs(y))
    elif norm == "l2":
        scale = np.linalg.norm(y.astype(np.float64), ord=2)
    else:
        raise ValueError("Unsupported normalization")
    y /= scale
    sign = np.sign(y)
    y = np.abs(y)

    # stocastic rounding
    if partition == 'linear':
        y *= k
        low = np.floor(y)
        p = y - low  # whether to ceil
        y = low + bernoulli(p, state)
        y /= k
    elif partition == "natural":
        y *= 2**(k - 1)
        low = round_next_pow2((np.ceil(y).astype(np.uint32))) >> 1
        length = copy.deepcopy(low)
        length[length == 0] = 1
        p = (y - low) / length
        y = low + length * bernoulli(p, state)
        y = y.astype(np.float32)
        y /= 2**(k - 1)
    else:
        raise ValueError("Unsupported partition")

    y *= sign
    y *= scale
    return y.reshape(x.shape)
Exemplo n.º 2
0
def bipartite_with_probability(V1, V2, p):
    '''
    Returns a random simple bipartite graph on V1 and V2 vertices,
    containing each possible edge with probability p.
    @param V1 the number of vertices in one partition
    @param V2 the number of vertices in the other partition
    @param p the probability that the graph contains an edge with one endpoint in either side
    @return a random simple bipartite graph on V1 and V2 vertices,
     containing each possible edge with probability p
    @raises ValueError if proba
    bility is not between 0 and 1
    '''
    if p < 0.0 or p > 1.0:
        raise ValueError('Probability must be between 0 and 1')
    # Modification question #5
    if V1 < 0 or V2 < 0:
        raise ValueError("Vertex value cannot be less then 0")
    vertices = [i for i in range(V1 + V2)]
    rand.shuffle(vertices)
    G = Graph(V1 + V2)
    for i in range(V1):
        for j in range(V2):
            if utils.bernoulli(p):
                G.add_edge((vertices[i], vertices[V1 + j]))
    return G
Exemplo n.º 3
0
def funct_dOmeg(H0, T, Omeg, order):
    """
    Return ODEs

    USAGE:
        funct_dOmeg(H0, T, Omeg, order)

    INPUT:
        H0   - matrix representing initial value of the Hamiltonian (T + V)

        T   - matrix representing kinetic values

        Omeg - matrix representing Omega values

        order - integer representing to what order to take the summation

    OUTPUT:
        dOmeg solutions from given Omeg
    """
    Hs = funct_Hs(H0, Omeg, order)

    eta = myComm(T, Hs)
    dOmeg = np.copy(eta)
    for i in xrange(1, order):  # length of order
        dOmeg += bernoulli(i) / factorial(i) * adjointOp(eta, Omeg, i)
    return dOmeg
Exemplo n.º 4
0
def simple_with_probability(V, p):
    '''
    Returns a random simple graph on V vertices, with an 
    edge between any two vertices with probability p. This is sometimes
    referred to as the Erdos-Renyi random graph model.
    @param V the number of vertices
    @param p the probability of choosing an edge
    @return a random simple graph on V vertices, with an edge between
         any two vertices with probability p
    @raises ValueError if probability is not between 0 and 1
    '''
    if p < 0.0 or p > 1.0:
        raise ValueError('Probability must be between 0 and 1')
    G = Graph(V)
    for v in range(V):
        for w in range(v+1,V,1):
            if utils.bernoulli(p):
                G.add_edge((v , w))
    return G
Exemplo n.º 5
0
 def forward(self, input):
     mask = bernoulli(self.size, 1 - self.p) / (1 - self.p)
     self._mask = mask
     return mask * input
Exemplo n.º 6
0
def sum_bernoulli(V, p):
    sum = 0
    for x in range(V):
        if (utils.bernoulli(p)):
            sum = sum + 1
    return sum