Exemplo n.º 1
0
def validate_instance_type_flag():
    # Validate the value:
    instance_tuple = _FLAG_INSTANCE_TYPE.value.strip().split("-")
    utils.check_equal(len(instance_tuple), 3)
    utils.check_contained(instance_tuple[0], {"n1", "n2"})

    utils.check_contained(instance_tuple[1], {"standard", "highmem"})
    num_cpus = int(instance_tuple[2])
    utils.check_operator(operator.le, num_cpus, 64)
    utils.check_operator(operator.ge, num_cpus, 0)
Exemplo n.º 2
0
def main(argv):
    if len(argv) > 1:
        raise RuntimeError(argv[1:])
    absl_logging.use_python_logging()
    utils.check_contained(_FLAG_APPROACH_TYPE.value, _ACCEPTABLE_APPROACHES)

    utils.check_operator(operator.xor, bool(_FLAG_H5_MODEL_PATH.value),
                         bool(_FLAG_CKPT_MODEL_PATH.value))

    if _FLAG_H5_MODEL_PATH.value:
        model_path = _FLAG_H5_MODEL_PATH.value
        mode = constants.SaveModeChoices.hfh5
    elif _FLAG_CKPT_MODEL_PATH.value:
        model_path = _FLAG_CKPT_MODEL_PATH.value
        mode = constants.SaveModeChoices.ckpt
    else:
        raise RuntimeError("Logically should never happen.")

    utils.check_exists(model_path)
    device_type = tf_utils.devices_to_use()[0].device_type

    # ONLY GPU IS SUPPORTED
    utils.check_equal(device_type, "GPU")

    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    # Build the distribution strategy
    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    if device_type == "TPU":
        # ONLY LOCAL TPU IS "SUPPORTED"
        utils.check_isinstance(_FLAG_IS_LOCAL_TPU.value, bool)
        assert _FLAG_IS_LOCAL_TPU.value
        tpu_config = tf_utils.init_tpus(local=True)
        utils.check_isinstance(tpu_config, tf_utils.TpuConfigType)
        utils.check_not_none(tpu_config)
        strategy = tf.distribute.TPUStrategy(tpu_config.resolver)
    elif device_type == "GPU":
        strategy = tf.distribute.MirroredStrategy(
            devices=tf.config.experimental.list_logical_devices('GPU'))
    else:
        raise RuntimeError(device_type)

    # ONLY GPU IS SUPPORTED
    print(tf.config.list_logical_devices())
    utils.check_isinstance(strategy, tf.distribute.MirroredStrategy)

    ##############################################################################
    # Load Model
    ##############################################################################
    with utils.log_duration(LOGGER, main.__name__, "All of model preparation"):
        with strategy.scope():
            # HF isn't able to read directly from GCS
            if (model_path.startswith("gs://")
                    and mode == constants.SaveModeChoices.hfh5):
                with utils.log_duration(LOGGER, main.__name__,
                                        "Download model from GS"):
                    with tempfile.TemporaryDirectory() as td:
                        td += os.path.sep

                        if os.path.exists("/root/google-cloud-sdk/bin/gsutil"):
                            exec_ = "/root/google-cloud-sdk/bin/gsutil"
                        else:
                            exec_ = "gsutil"

                        command = [
                            exec_,
                            "-m",
                            "cp",
                            "-r",
                            os.path.join(model_path, "*"),
                            td,
                        ]
                        LOGGER.debug("Running bash command: %s",
                                     " ".join(command))
                        subprocess.check_call(command)
                        LOGGER.debug("Files at the temp dir(%s): %s", td,
                                     str(os.listdir(td)))

                        model = make_model_tf(td, mode=mode)
            else:
                model = make_model_tf(model_path, mode=mode)

    utils.check_not_none(model)

    ##############################################################################
    # Load Dataset Pipeline
    ##############################################################################
    utils.check_contained(
        _FLAG_APPROACH_TYPE.value, {
            constants.ApproachTypeChoices.naked_lm,
            constants.ApproachTypeChoices.cached_pretok
        })
    devices = tf_utils.devices_to_use()
    num_replicas = (len(devices)
                    if devices[0].device_type in {"GPU", "TPU"} else 1)
    utils.check_equal(devices[0].device_type, "GPU")

    # Only a batch size of 1 is currently supported. We need attention masks
    batch_size = _FLAG_BATCH_SIZE.value * num_replicas
    approach_type = _FLAG_APPROACH_TYPE.value

    logging.debug("Loading dataset.")
    tokenizer = transformers.GPT2TokenizerFast.from_pretrained("gpt2-xl")
    ds = prep_ds_for_generation(
        dict(
            tokenizer=tokenizer,
            context_window_size=1024,
            dataset_name="kilt_eli5",
            batch_size=1,  # >> We set our own batch size elsewhere
            db_path=None,  # None,
            random_seed=0,
            use_subset=False,
            subset_size=-1,
            use_helper_words=True,
            approach_type=approach_type,
            num_retrievals=5,  # Will never change
            retrieval_temperature=1.,
            retriever=None,  # Cached retrievals don't need a retriever
            repeat=False,  # Will never change
            split=_FLAG_SPLIT.value,
            enable_debug_checks=False,
            retrieval_bank_size=5,  # Will never change
            dataset_type=_FLAG_DATASET_TYPE.value,
            tfr_prefix=_FLAG_TFR_PREFIX.value,
            qty_shuffle=1,  # Will never change
            max_length_generation=350),
        tokenizer,
        _FLAG_SPLIT.value)

    ds = strategy.experimental_distribute_dataset(ds)

    ##############################################################################
    # Generate
    ##############################################################################
    LOGGER.debug("Generating.")
    generations = []
    num_entries_in_split = (
        task_specific.DATASET_CARDINALITIES["kilt_eli5"][_FLAG_SPLIT.value])

    entries_counter = tqdm.tqdm(total=num_entries_in_split)

    for batch_no, batch in enumerate(ds):
        # Calling model.generate. We should make a config file with the
        # hyperparameters for generation, or make a facility in the one we already
        # have. I feel like a separate one would be better, separating concerns.
        output = strategy.run(
            model.generate,
            kwargs=dict(
                input_ids=batch,
                max_length=_FLAG_GENERATION_LENGTH_LIMIT.value,
                use_cache=True,
                attention_mask=tf.cast(batch != tokenizer.eos_token_id,
                                       tf.int32),
                repetition_penalty=2.,
                num_beams=5,
            ))
        output = tf_utils.process_strat_output(strategy_outputs=output,
                                               current_batch_size=batch_size,
                                               strategy=strategy,
                                               name="generations")

        #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Display the inputs and outputs.
        #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

        rich_console = rich.console.Console(color_system="256")
        print_sample = make_print_sample()

        with utils.log_duration(LOGGER, "main",
                                "all of tokenizer.decode for a batch."):
            for i in range(batch_size):
                input_text = tokenizer.decode(batch.numpy()[i])
                output_text = tokenizer.decode(output.numpy()[i])
                print("#" * 1000)
                print(f"Batch {batch_no} Generation {i}")
                print_sample(input_text, f"input batch_no {batch_no}",
                             rich_console)
                print_sample(output_text, f"output batch_no {batch_no}",
                             rich_console)
                generations.append(output_text)
            print("#" * 1000)
        entries_counter.update(batch.shape[0])

    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    # Save the output to a JSON File.
    #~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    utils.to_json_file(
        os.path.join(_FLAG_OUTPUT_PATH.value, _FLAG_SPLIT.value,
                     _FLAG_APPROACH_TYPE.value,
                     time.strftime("%Y%m%d-%H%M%S.json")),
        dict(flags={
            flag.name: flag.value
            for flag in flags.FLAGS.flags_by_module_dict()[argv[0]]
        },
             generations=generations))
    logging.debug("Saved to: %s", _FLAG_OUTPUT_PATH.value)
Exemplo n.º 3
0
def main(argv):
    if len(argv) > 1:
        raise RuntimeError(argv[1:])
    absl_logging.use_python_logging()
    utils.check_contained(_FLAG_APPROACH_TYPE.value, _ACCEPTABLE_APPROACHES)
    db_path = _FLAG_DB_PATH.value
    model_path = _FLAG_MODEL_PATH.value
    tpu_config = tf_utils.init_tpus()
    device_type = tf_utils.devices_to_use()[0].device_type
    if device_type == "TPU":
        assert isinstance(tpu_config, tf_utils.TpuConfigType)
        strategy = tf.distribute.TPUStrategy(tpu_config.resolver)
    elif device_type == "GPU" or "CPU":
        # MirroredStrategy automatically becomes OneDeviceStrategy if there is
        # just one device, like one GPU or only CPUs.
        strategy = tf.distribute.MirroredStrategy()
    else:
        raise RuntimeError()

    ##############################################################################
    # Load Model
    ##############################################################################
    with utils.log_duration(LOGGER, main.__name__, "All of model preparation"):

        def make_model_tf(path):
            with utils.log_duration(LOGGER, make_model_tf.__name__,
                                    "Load model."):
                if os.path.exists(path):
                    config_path = os.path.join(path, "config.json")
                    model_path = os.path.join(path, "tf_model.h5")
                    utils.check_exists(config_path)
                    utils.check_exists(model_path)
                    config = transformers.GPT2Config.from_pretrained(
                        config_path)
                    return transformers.TFGPT2LMHeadModel.from_pretrained(
                        model_path, config=config)
                else:
                    return transformers.TFGPT2LMHeadModel.from_pretrained(
                        path, )

        with strategy.scope():
            if model_path.startswith("gs://"):
                with utils.log_duration(LOGGER, main.__name__,
                                        "Download model from GS"):
                    with tempfile.TemporaryDirectory() as td:
                        td += os.path.sep

                        if os.path.exists("/root/google-cloud-sdk/bin/gsutil"):
                            exec_ = "/root/google-cloud-sdk/bin/gsutil"
                        else:
                            exec_ = "gsutil"

                        command = [
                            exec_,
                            "-m",
                            "cp",
                            "-r",
                            os.path.join(model_path, "*"),
                            td,
                        ]
                        LOGGER.debug("Running bash command: %s",
                                     " ".join(command))
                        subprocess.check_call(command)
                        LOGGER.debug("Files at the temp dir(%s): %s", td,
                                     str(os.listdir(td)))

                        model = make_model_tf(td)
            else:
                model = make_model_tf(model_path)

            model.__call__ = tf.function(
                model.__call__,
                experimental_relax_shapes=True,
                experimental_compile=True,
            )

    ##############################################################################
    # Load Dataset Pipeline
    ##############################################################################

    utils.check_contained(
        _FLAG_APPROACH_TYPE.value, {
            constants.ApproachTypeChoices.naked_lm,
            constants.ApproachTypeChoices.naked_lm
        })
    devices = tf_utils.devices_to_use()
    num_replicas = len(devices) if devices[0].device_type in {"GPU", "TPU"
                                                              } else 1
    # Only a batch size of 1 is currently supported. We need attention masks
    utils.check_equal(_FLAG_BATCH_SIZE.value, 1)
    batch_size = _FLAG_BATCH_SIZE.value * num_replicas
    approach_type = _FLAG_APPROACH_TYPE.value

    # Things that will never change:
    random_seed = 0
    use_helper_words = True
    retrieval_temperature = 1
    context_window_size = 1024

    logging.debug("Loading dataset.")
    tokenizer = transformers.GPT2TokenizerFast.from_pretrained("gpt2-xl")
    ds = task_specific.create_lm_ds_kilt_eli5(
        tokenizer=tokenizer,
        context_window_size=context_window_size,
        dataset_name="kilt_eli5",
        batch_size=1,  # >> We set our own batch size elsewhere
        db_path=db_path,
        random_seed=random_seed,
        use_subset=False,
        subset_size=-1,
        use_helper_words=use_helper_words,
        approach_type=approach_type,
        num_retrievals=5,  # Will never change
        retrieval_temperature=retrieval_temperature,
        retriever=None,  # Cached retrievals don't need a retriever
        repeat=False,  # Will never change
        split=_FLAG_SPLIT.value,
        enable_debug_checks=False,
        retrieval_bank_size=5,  # Will never change
        dataset_type=_FLAG_DATASET_TYPE.value,
        tfr_prefix=_FLAG_TFR_PREFIX.value,
        qty_shuffle=1,  # Will never change
        max_length_generation=_FLAG_GENERATION_LENGTH_LIMIT.value)

    def further_prep_generate_not_test(batch):
        batch = tf.boolean_mask(
            batch["input_ids"],
            tf.logical_and(batch["label_ids"] == -100,
                           batch["input_ids"] != tokenizer.eos_token_id))
        return batch

    @tf.function
    def further_prep_generate_test(batch):
        batch = tf.boolean_mask(batch["input_ids"],
                                batch["input_ids"] != tokenizer.eos_token_id)
        return batch

    if _FLAG_SPLIT.value == constants.SplitChoices.test:
        ds = ds.map(further_prep_generate_test)
    else:
        ds = ds.map(further_prep_generate_not_test)

    ds = ds.padded_batch(batch_size=batch_size,
                         padding_values=tokenizer.eos_token_id)
    ds = strategy.experimental_distribute_dataset(ds)

    ##############################################################################
    # Generate
    ##############################################################################
    LOGGER.debug("Generating.")
    generations = []
    counter = tqdm.tqdm(ds,
                        total=task_specific.DATASET_CARDINALITIES["kilt_eli5"][
                            _FLAG_SPLIT.value])

    for batch_no, batch in enumerate(counter):
        output = strategy.run(
            model.generate,
            kwargs=dict(input_ids=batch,
                        max_length=_FLAG_GENERATION_LENGTH_LIMIT.value,
                        use_cache=True,
                        attention_mask=batch == tokenizer.eos_token_id))

        LOGGER.debug("INPUT: %s", tokenizer.decode(batch[0]))
        output = tf_utils.process_strat_output(strategy_outputs=output,
                                               current_batch_size=batch_size,
                                               strategy=strategy,
                                               name="generations")

        with utils.log_duration(LOGGER, "main",
                                "all of tokenizer.decode for a batch."):
            for i in range(batch_size):
                text = tokenizer.decode(output.numpy()[i])
                LOGGER.debug("Batch %d Generation %d", batch_no, i)
                LOGGER.debug(text.replace("\n", " <\\n> "))
                generations.append(text)

        counter.update(batch.shape[0])

    utils.to_json_file(
        os.path.join(_FLAG_OUTPUT_PATH.value, _FLAG_SPLIT.value,
                     _FLAG_APPROACH_TYPE.value,
                     time.strftime("%Y%m%d-%H%M%S.json")),
        dict(flags={
            flag.name: flag.value
            for flag in flags.FLAGS.flags_by_module_dict()[argv[0]]
        },
             generations=generations))
    logging.debug("Saved to: %s", _FLAG_OUTPUT_PATH.value)
Exemplo n.º 4
0
def main(argv):
    #######################################################################
    # Initial Setup. Logging, Flags, Random seeds.
    #######################################################################
    if len(argv) > 1:
        raise app.UsageError("Too many command-line arguments.")
    absl_logging.use_python_logging()
    flags_dict = {
        flag.name: flag.value
        for flag in FLAGS.flags_by_module_dict()[argv[0]]
    }

    if FLAGS.use_subset:
        message = (f"{colorama.Back.RED}{colorama.Fore.WHITE}"
                   f"{colorama.Style.BRIGHT}USING A SUBSET OF THE DATASET"
                   f"{colorama.Style.RESET_ALL}")
        LOGGER.warning(message)

    utils.log_module_args(LOGGER, argv[0])
    if not FLAGS.output_dir.startswith("gs://"):
        utils.check_exists(FLAG_OUTPUT_DIR.value)
        if not tf.io.gfile.isdir(FLAG_OUTPUT_DIR.value):
            raise RuntimeError("Output dir needs to be a directory.")

    tf.random.set_seed(FLAG_RANDOM_SEED.value)
    np.random.seed(FLAG_RANDOM_SEED.value)

    # Prepare the instance output directory path and save the config there
    folder_name = time.strftime(
        f"{FLAG_RUN_NAME.value}_{FLAG_APPROACH_TYPE.value}_%Y%m%d-%H%M%S")
    instance_output_dir = os.path.join(FLAG_OUTPUT_DIR.value,
                                       folder_name).strip()
    if not instance_output_dir.endswith("/"):
        instance_output_dir += "/"
    json_target = os.path.join(instance_output_dir, "training_params.json")
    if not json_target.strip().startswith("gs://"):
        subprocess.check_call(["mkdir", "-p", instance_output_dir])
    utils.to_json_file(json_target, instance_output_dir)

    ##############################################################################
    # Initialization and Configuration of the Devices.
    ##############################################################################
    tpu_setup = None
    # current_acelerator_type is always "CPU" in the beginning with TPUs
    if tf_utils.current_accelerator_type() == "CPU":
        tpu_setup = tf_utils.init_tpus()

    LOGGER.debug("Devices we are computing on:\n%s",
                 utils.wrap_iterable(map(str, tf_utils.devices_to_use())))
    LOGGER.debug("All devices:")
    LOGGER.debug(tf_utils.device_mapping())

    if tf_utils.current_accelerator_type() == "GPU":
        tf.config.set_soft_device_placement(True)

    if tf_utils.current_accelerator_type() != "TPU":
        tf.debugging.set_log_device_placement(True)

    if FLAG_DISTRIBUTE_MODE.value in constants.PURE_DATA_PARALLEL_STRATEGIES:
        actual_num_replicas = len(tf_utils.devices_to_use())
    elif FLAG_DISTRIBUTE_MODE.value in constants.DATA_PARALLEL_DMC:
        actual_num_replicas = FLAG_NUM_REPLICAS.value
    else:
        actual_num_replicas = 1

    ##############################################################################
    # We load the retriever model if it is needed.
    ##############################################################################
    # Not currently used.

    retriever = None
    # if (FLAG_APPROACH_TYPE.value ==
    #     constants.ApproachTypeChoices.lm_and_realm):
    #   raise NotImplementedError("This part needs to be tested anew.")
    # config_path = FLAG_RETRIEVER_CONFIG_PATH.value
    # realm_save = tf_utils.REALMSave(**utils.from_json_file(config_path))
    #
    # # Approx 15 min when not in dev mode, on CPU
    # with utils.log_duration(LOGGER, "main",
    #                         "whole of BERTScaNNRetriever.__init__",
    #                         logging.INFO):
    #   scann_config = retrievers.ScannConfig(
    #       **utils.from_json_file(FLAG_SCANN_CONFIG_PATH.value))
    #   retriever = retrievers.BERTScaNNRetriever(
    #       retriever_module_path=realm_save.query_embedder_path,
    #       block_records_path=realm_save.text_records,
    #       num_block_records=realm_save.num_block_records,
    #       mode=tf.estimator.ModeKeys.EVAL,
    #       scann_config=scann_config)

    # elif (FLAG_APPROACH_TYPE.value ==
    #       constants.ApproachTypeChoices.cached_realm):
    #   raise NotImplementedError("This part needs to be tested anew.")
    # config_path = FLAG_RETRIEVER_CONFIG_PATH.value
    # realm_save = tf_utils.REALMSave(**utils.from_json_file(config_path))
    #
    # # Approx 15 min when not in dev mode, on CPU
    # with utils.log_duration(LOGGER, "main",
    #                         "whole of FullyCachedRetriever.__init__",
    #                         logging.INFO):
    #
    #   retriever = retrievers.FullyCachedRetriever(
    #       db_path=FLAG_FULLYCACHED_H5_PATH.value,
    #       block_records_path=realm_save.text_records,
    #       num_block_records=realm_save.num_block_records,
    #       )

    ##############################################################################
    # Distributed training task
    ##############################################################################
    if FLAG_TASK.value == constants.TaskChoices.train:
        with utils.log_duration(LOGGER, "main", "Load model"):
            utils.print_mem("before loading model", LOGGER)
            model_specific = task_specific.load_model(
                FLAG_MODEL_LOAD_PATH.value, FLAG_MODEL_KEY.value,
                FLAG_DISTRIBUTE_MODE.value, tpu_setup, FLAG_NUM_REPLICAS.value)
            utils.print_mem("after loading model", LOGGER)
            model_or_replicas = model_specific.model
            if isinstance(model_or_replicas, list):
                model_or_replicas: List[transformers.TFGPT2LMHeadModel]
            else:
                model_or_replicas: transformers.TFGPT2LMHeadModel

            tokenizer = model_specific.tokenizer

            def make_optimizer():
                return tensor2tensor.utils.adafactor.AdafactorOptimizer(
                    learning_rate=FLAG_LEARNING_RATE.value)

            if model_specific.strategy:
                with model_specific.strategy.scope():
                    optimizer = make_optimizer()
            else:
                optimizer = make_optimizer()

        ############################################################################
        # Prepare the dataset functions
        ############################################################################
        rg = np.random.default_rng(FLAG_RANDOM_SEED.value)

        def call_lm_preproc(repeat, split, random_seed):
            """Using functools.partial prevents the linter from doing its job."""
            if FLAG_DATASET_NAME.value == constants.DatasetNameChoices.kilt_eli5:
                return task_specific.create_lm_ds_kilt_eli5(
                    tokenizer=tokenizer,
                    context_window_size=(
                        model_or_replicas[0].config.n_positions if isinstance(
                            model_or_replicas,
                            list) else model_or_replicas.config.n_positions),
                    dataset_name=FLAG_DATASET_NAME.value,
                    # Batches are split over the replicas:
                    batch_size=FLAG_BATCH_SIZE.value * actual_num_replicas,
                    db_path=FLAG_DB_PATH.value,
                    random_seed=random_seed,
                    use_subset=FLAG_USE_SUBSET.value,
                    subset_size=FLAG_SUBSET_SIZE.value,
                    use_helper_words=FLAG_USE_HELPER_WORDS.value,
                    approach_type=FLAG_APPROACH_TYPE.value,
                    num_retrievals=FLAG_NUM_RETRIEVALS.value,
                    retrieval_temperature=FLAG_RETRIEVAL_TEMPERATURE.value,
                    retriever=retriever,
                    repeat=repeat,
                    split=split,
                    enable_debug_checks=FLAG_DATASET_DEBUG.value,
                    retrieval_bank_size=FLAG_RETRIEVAL_BANK_SIZE.value,
                    dataset_type=FLAG_DATASET_TYPE.value,
                    qty_shuffle=FLAG_QTY_SHUFFLE.value,
                    tfr_prefix=FLAG_TFR_PREFIX.value,
                    max_length_generation=FLAG_MAX_LENGTH_GENERATION.value,
                )
            else:
                raise NotImplementedError(
                    f"FLAG_DATASET_NAME.value unsupported: `{FLAG_DATASET_NAME.value}`"
                )

        make_training_dataset: Callable[Ellipsis,
                                        tf.data.Dataset] = functools.partial(
                                            call_lm_preproc,
                                            split="train",
                                            repeat=False,
                                        )
        make_eval_dataset: Callable[Ellipsis,
                                    tf.data.Dataset] = functools.partial(
                                        call_lm_preproc,
                                        split="eval",
                                        repeat=True,
                                    )

        ############################################################################
        # Prepare the step functions
        ############################################################################
        utils.check_contained(FLAG_DISTRIBUTE_MODE.value,
                              constants.DistributeModeChoices.choices())
        tf_function_flags = dict(
            experimental_compile=FLAG_EXPERIMENTAL_COMPILE.value,
            experimental_relax_shapes=not FLAG_INPUT_FIXED_SIZE.value)

        if (FLAG_DISTRIBUTE_MODE.value ==
                constants.DistributeModeChoices.split_and_data_parallel):
            if not isinstance(model_or_replicas, list):
                raise RuntimeError(type(model_or_replicas))
            training_step = build_manual_data_parallel_training_step(
                model_or_replicas, optimizer, tf_function_flags)

        else:
            training_step = build_regular_training_step(
                model_or_replicas,
                optimizer,
                strategy=model_specific.strategy,
                tf_function_kwargs=tf_function_flags)

        evaluation_step = build_evaluation_step(model_or_replicas,
                                                tf_function_flags)

        secs_since_last_ckpt = time.time()
        # Model checkpoints are saved to the tmp_directory and then rsynced to GCS
        ##########################################################################
        # Prepare the different logging facilities
        ##########################################################################
        train_log_dir = os.path.join(instance_output_dir, "tensorboard",
                                     "train")
        eval_log_dir = os.path.join(instance_output_dir, "tensorboard", "eval")
        flags_log_dir = os.path.join(instance_output_dir, "tensorboard",
                                     "params")
        writers = dict(train=tf.summary.create_file_writer(train_log_dir),
                       eval=tf.summary.create_file_writer(eval_log_dir),
                       flags=tf.summary.create_file_writer(flags_log_dir))
        with writers["flags"].as_default():
            tf.summary.text(
                "Flags",
                # Tensorboard takes Markdown:
                json.dumps(flags_dict, indent=4).replace("\n", "\n\n"),
                step=0)

        ma_loss = dict(train=utils.MovingAverage(0.9),
                       eval=utils.MovingAverage(0.9))
        step_counters = dict(train=0, eval=0)
        batch_counters = dict(train=0, eval=0)
        prev_batch_end = time.time()

        # The eval ds has no real concept of epoch, repeats forever, shuffling
        # each time it reaches its end
        with utils.log_duration(LOGGER, "main", "All of make_eval_dataset"):
            eval_ds_instance = make_eval_dataset(random_seed=rg.integers(
                -2**63, 2**63 - 1), )
        LOGGER.debug("Distributing the eval dataset to the replicas.")
        if FLAG_DATASET_TYPE.value == "tfr":
            eval_ds_instance = (
                model_specific.strategy.experimental_distribute_dataset(
                    eval_ds_instance))

        LOGGER.debug("Done distributing the eval dataset to the replcias.")
        eval_ds_instance = iter(eval_ds_instance)

        ##########################################################################
        # Training Loop
        ##########################################################################
        for epoch in itertools.count():
            ####################################################################
            # Epoch Setup
            ####################################################################
            LOGGER.debug("EPOCH %d START", epoch)
            # Shuffle differently every epoch
            with utils.log_duration(LOGGER, "main",
                                    "All of make_training_dataset"):
                train_ds_instance = make_training_dataset(
                    random_seed=rg.integers(-2**63, 2**63 - 1), )
            LOGGER.debug(
                "Attempting to distribute the training dataset to the replicas."
            )
            if FLAG_DATASET_TYPE.value == "tfr":
                train_ds_instance = (
                    model_specific.strategy.experimental_distribute_dataset(
                        train_ds_instance))

            LOGGER.debug(
                "Done distributing the training dataset to the replicas.")
            train_ds_instance = iter(train_ds_instance)

            # This allows us to see if we reached the end of the training iterator,
            # in which case "did_at_least_one_training_batch == False".
            # We could also test that it did all the batches, to similar results.
            did_at_least_one_training_batch = True
            split = "eval"
            while did_at_least_one_training_batch:
                # Invert split
                if split == "train":
                    split = "eval"
                else:
                    split = "train"

                # Prepare to test if we did at least one training batch
                if split == "train":
                    did_at_least_one_training_batch = False

                if split == "train":
                    dataset_iterator = itertools.islice(
                        train_ds_instance, FLAG_BATCHES_BETWEEN_EVALS.value)
                else:
                    # The evaluation DS is tiny, so we reshuffle and take a random
                    dataset_iterator = itertools.islice(
                        eval_ds_instance, FLAG_NUMBER_EVAL_BATCHES.value)

                LOGGER.debug("Batching")
                for batch in dataset_iterator:
                    # LOGGER.debug("Input sentence:\n\"%s\"",
                    #              tokenizer.decode([x for x in batch["input_ids"][0]
                    #                                if x != tokenizer.eos_token_id]))
                    # LOGGER.debug("Label:\n\"%s\"",
                    #              tokenizer.decode([(x if x != -100 else 0)
                    #                                for x in batch["label_ids"][0]]))

                    if FLAG_DATASET_TYPE.value != "tfr":
                        batch = (model_specific.strategy.
                                 experimental_distribute_values_from_function(
                                     tf_utils.make_dict_distribute_fn(batch)))

                    # We only care about training epochs as, obviously, we don't train
                    # over eval samples; the number of  eval samples seen only
                    # contributes to lowering the variance in the evaluation of when to
                    # do early stopping.
                    if split == "train":
                        did_at_least_one_training_batch = True

                    input_ids = batch["input_ids"]
                    label_ids = batch["label_ids"]

                    ####################################################################
                    # Training Step
                    ####################################################################
                    step_counters[split] += (FLAG_BATCH_SIZE.value *
                                             actual_num_replicas)

                    if split == "train":
                        batch_counters[split] += 1
                        training_kwargs = dict(
                            input_ids=input_ids,
                            label_ids=label_ids,
                        )

                        if model_specific.strategy:
                            utils.print_mem("before running", LOGGER)

                            LOGGER.debug("Training, Calling strategy.run")
                            loss = model_specific.strategy.run(
                                training_step, kwargs=training_kwargs)
                            LOGGER.debug("Training, Done with strategy.run")
                            utils.print_mem("after running", LOGGER)

                        else:
                            loss = training_step(**training_kwargs)  # pytype: disable=wrong-arg-count
                            # If we are in the strategy-free data parallel mode, we need
                            # to change the weights of all replicas to those of the model at
                            # index 0
                            if (FLAG_DISTRIBUTE_MODE.value ==
                                    constants.DistributeModeChoices.
                                    split_and_data_parallel):
                                for replica in model_or_replicas[1:]:
                                    replica.set_weights(
                                        model_or_replicas[0].get_weights())

                    ####################################################################
                    # Evaluation Step
                    ####################################################################
                    elif split == "eval":
                        evaluation_kwargs = dict(
                            input_ids=input_ids,
                            label_ids=label_ids,
                        )

                        if model_specific.strategy:
                            loss = model_specific.strategy.run(
                                evaluation_step, kwargs=evaluation_kwargs)
                        else:
                            loss = evaluation_step(**evaluation_kwargs)
                    else:
                        raise ValueError(
                            f"Unexpected value for split: {split}")

                    ####################################################################
                    # Logging
                    ####################################################################
                    if (FLAG_DISTRIBUTE_MODE.value
                            in constants.PURE_DATA_PARALLEL_STRATEGIES):
                        utils.check_equal(len(loss.values),
                                          actual_num_replicas)
                        LOGGER.debug("Split: %s", split)
                        LOGGER.debug("Real num replicas: %s",
                                     actual_num_replicas)
                        LOGGER.debug("Loss: %s", loss)
                        LOGGER.debug("Loss values: %s", loss.values)

                        average_loss = float(
                            tf.math.reduce_mean(loss.values).numpy())
                    else:
                        average_loss = float(loss.numpy())

                    # tf.debugging.check_numerics(loss)
                    now = time.time()
                    batch_duration = now - prev_batch_end
                    prev_batch_end = now
                    ma_loss[split].update(average_loss)

                    # Actual logging
                    LOGGER.info("Epoch: # %d", epoch)
                    LOGGER.info("Tensorboard_dir: %s", instance_output_dir)
                    LOGGER.info("Batch: %s # %d", split, batch_counters[split])
                    LOGGER.info("Step: %s # %d", split, step_counters[split])
                    if FLAG_USE_SUBSET.value:
                        LOGGER.warning(">> USING A SUBSET OF THE DATASET <<")
                    LOGGER.info("%(split)s Batch loss:           %(metric)f",
                                dict(split=split, metric=average_loss))
                    LOGGER.info(
                        "%(split)s Moving average loss:  %(metric)f",
                        dict(split=split, metric=ma_loss[split].average))
                    LOGGER.info(
                        "%(split)s Moving average ppl:   %(metric)f",
                        dict(split=split,
                             metric=np.exp(ma_loss[split].average)))
                    LOGGER.info(
                        "%(split)s Batch duration:       %(duration)s",
                        dict(split=split,
                             duration=utils.TimeStamp.from_seconds(
                                 batch_duration).format()))
                    if FLAG_DISTRIBUTE_MODE.value in constants.DATA_PARALLEL_DMC:
                        LOGGER.info(
                            "%(split)s Duration per sample:  %(duration)s",
                            dict(split=split,
                                 duration=utils.TimeStamp.from_seconds(
                                     batch_duration / (FLAG_BATCH_SIZE.value *
                                                       actual_num_replicas))))

                    # Write to Tensorboard
                    with writers[split].as_default():
                        tf.summary.scalar(f"Loss/{split}", average_loss,
                                          step_counters[split])
                        tf.summary.scalar(f"PPL/{split}", np.exp(average_loss),
                                          step_counters[split])
                    writers[split].flush()

                    # Save every 5 min
                    if (time.time() - secs_since_last_ckpt) / (60 * 20) >= 1:
                        secs_since_last_ckpt = time.time()
                        save_model(train_steps=step_counters["train"],
                                   model_or_replicas=model_or_replicas,
                                   instance_output_dir=instance_output_dir)

                secs_since_last_ckpt = time.time()
                save_model(train_steps=step_counters["train"],
                           model_or_replicas=model_or_replicas,
                           instance_output_dir=instance_output_dir)
        #############################################################
        # Post Training Cleanup
        #######################################################################
        for writer in writers.values():
            writer.close()
Exemplo n.º 5
0
def main(argv):
    ##############################################################################
    # Initial Setup. Logging, Flags, Random seeds.
    ##############################################################################
    if len(argv) > 1:
        raise app.UsageError("Too many command-line arguments.")
    absl_logging.use_python_logging()
    flags_dict = {
        flag.name: flag.value
        for flag in FLAGS.flags_by_module_dict()[argv[0]]
    }

    if FLAGS.use_subset:
        message = (f"{colorama.Back.RED}{colorama.Fore.WHITE}"
                   f"{colorama.Style.BRIGHT}USING A SUBSET OF THE DATASET"
                   f"{colorama.Style.RESET_ALL}")
        LOGGER.warning(message)

    utils.log_module_args(LOGGER, argv[0])
    if not FLAGS.output_dir.startswith("gs://"):
        utils.check_exists(FLAG_OUTPUT_DIR.value)
        if not tf.io.gfile.isdir(FLAG_OUTPUT_DIR.value):
            raise RuntimeError("Output dir needs to be a directory.")

    tf.random.set_seed(FLAG_RANDOM_SEED.value)
    np.random.seed(FLAG_RANDOM_SEED.value)

    # Prepare the instance output directory path and save the config there
    # Prepare the path
    folder_name = time.strftime(
        f"{FLAG_RUN_NAME.value}_{FLAG_APPROACH_TYPE.value}_%Y%m%d-%H%M%S")
    instance_output_dir = os.path.join(FLAG_OUTPUT_DIR.value,
                                       folder_name).strip()
    if not instance_output_dir.endswith("/"):
        instance_output_dir += "/"
    json_target = os.path.join(instance_output_dir, "training_params.json")

    # Make the folder if we're not on gcloud
    if not json_target.strip().startswith("gs://"):
        subprocess.check_call(["mkdir", "-p", instance_output_dir])

    # Safe the config file
    utils.to_json_file(json_target, flags_dict)

    ##############################################################################
    # Initialization and Configuration of the Devices.
    ##############################################################################
    tpu_setup = None

    accel = tf_utils.current_accelerator_type()
    if FLAG_TPU_IS_LOCAL.value:
        assert accel == "TPU", accel
    if accel == "TPU":
        assert FLAG_TPU_IS_LOCAL.value, FLAG_TPU_IS_LOCAL.value

    if tf_utils.current_accelerator_type() in {"CPU", "TPU"}:
        tpu_setup = tf_utils.init_tpus(tpu_name=FLAG_TPU_NAME.value,
                                       local=FLAG_TPU_IS_LOCAL.value)

    LOGGER.debug("Devices we are computing on:\n%s",
                 utils.wrap_iterable(map(str, tf_utils.devices_to_use())))
    LOGGER.debug("All devices:")
    LOGGER.debug(tf_utils.device_mapping())

    if tf_utils.current_accelerator_type() == "GPU":
        tf.config.set_soft_device_placement(True)

    if tf_utils.current_accelerator_type() != "TPU":
        tf.debugging.set_log_device_placement(True)

    utils.check_operator(operator.ne, tf_utils.current_accelerator_type(),
                         "CPU")

    assert FLAG_TPU_NAME.value == socket.gethostname(), (
        "This is a configuration choice. You can remove this. "
        "There will be no side effects.")

    if FLAG_DISTRIBUTE_MODE.value in constants.PURE_DATA_PARALLEL_STRATEGIES:
        actual_num_replicas = len(tf_utils.devices_to_use())
    elif FLAG_DISTRIBUTE_MODE.value in constants.DATA_PARALLEL_DMC:
        actual_num_replicas = FLAG_NUM_REPLICAS.value
    else:
        actual_num_replicas = 1

    ##############################################################################
    # We load the retriever model if it is needed.
    ##############################################################################
    # Not currently used. See old commits.
    retriever = None

    ##############################################################################
    # Distributed training task
    ##############################################################################
    if FLAG_TASK.value == constants.TaskChoices.train:
        with utils.log_duration(LOGGER, "main", "Load model"):
            utils.print_mem("before loading model", LOGGER)
            model_specific = task_specific.load_model(
                FLAG_MODEL_KEY.value, FLAG_DISTRIBUTE_MODE.value, tpu_setup,
                FLAG_NUM_REPLICAS.value)
            utils.print_mem("after loading model", LOGGER)
            model = model_specific.model
            if isinstance(model, list):
                model: List[transformers.TFGPT2LMHeadModel]
            else:
                model: transformers.TFGPT2LMHeadModel

            tokenizer = model_specific.tokenizer

            def make_optimizer():
                if FLAG_OPTIMIZER_TYPE.value == constants.OptimizerTypes.adafactor:
                    return tensor2tensor.utils.adafactor.AdafactorOptimizer(
                        learning_rate=FLAG_LEARNING_RATE.value)
                elif FLAG_OPTIMIZER_TYPE.value == constants.OptimizerTypes.adam:
                    return tf.keras.optimizers.Adam(
                        learning_rate=FLAG_LEARNING_RATE.value)
                else:
                    raise ValueError(FLAG_OPTIMIZER_TYPE.value)

            if model_specific.strategy:
                with model_specific.strategy.scope():
                    optimizer = make_optimizer()
            else:
                optimizer = make_optimizer()

        ############################################################################
        # Prepare the dataset functions
        ############################################################################
        rg = np.random.default_rng(FLAG_RANDOM_SEED.value)

        def call_lm_preproc(repeat, split, random_seed):
            """Using functools.partial prevents the linter from doing its job."""
            if FLAG_DATASET_NAME.value == constants.DatasetNameChoices.kilt_eli5:
                return task_specific.create_lm_ds_kilt_eli5(
                    tokenizer=tokenizer,
                    context_window_size=model.config.n_positions,
                    dataset_name=FLAG_DATASET_NAME.value,
                    # Batches are split over the replicas:
                    batch_size=FLAG_BATCH_SIZE.value * actual_num_replicas,
                    db_path=FLAG_DB_PATH.value,
                    random_seed=random_seed,
                    use_subset=FLAG_USE_SUBSET.value,
                    subset_size=FLAG_SUBSET_SIZE.value,
                    use_helper_words=FLAG_USE_HELPER_WORDS.value,
                    approach_type=FLAG_APPROACH_TYPE.value,
                    num_retrievals=FLAG_NUM_RETRIEVALS.value,
                    retrieval_temperature=FLAG_RETRIEVAL_TEMPERATURE.value,
                    retriever=retriever,
                    repeat=repeat,
                    split=split,
                    enable_debug_checks=FLAG_DATASET_DEBUG.value,
                    retrieval_bank_size=FLAG_RETRIEVAL_BANK_SIZE.value,
                    dataset_type=FLAG_DATASET_TYPE.value,
                    qty_shuffle=FLAG_QTY_SHUFFLE.value,
                    tfr_prefix=FLAG_TFR_PREFIX.value,
                    max_length_generation=FLAG_MAX_LENGTH_GENERATION.value,
                )
            else:
                raise NotImplementedError(
                    f"FLAG_DATASET_NAME.value unsupported: `{FLAG_DATASET_NAME.value}`"
                )

        make_training_dataset: Callable[...,
                                        tf.data.Dataset] = functools.partial(
                                            call_lm_preproc,
                                            split="train",
                                            repeat=False,
                                        )
        make_eval_dataset: Callable[..., tf.data.Dataset] = functools.partial(
            call_lm_preproc,
            split="eval",
            repeat=True,
        )

        ############################################################################
        # Prepare the step functions
        ############################################################################
        utils.check_contained(FLAG_DISTRIBUTE_MODE.value,
                              constants.DistributeModeChoices.choices())
        tf_function_flags = dict(
            experimental_compile=FLAG_EXPERIMENTAL_COMPILE.value,
            experimental_relax_shapes=not FLAG_INPUT_FIXED_SIZE.value)

        training_step = build_regular_training_step(
            model,
            optimizer,
            strategy=model_specific.strategy,
            tf_function_kwargs=tf_function_flags)

        evaluation_step = build_evaluation_step(model, tf_function_flags)

        timestamp_last_ckpt_secs = time.time()
        # Model checkpoints are saved to the tmp_directory and then rsynced to GCS

        ############################################################################
        # Prepare the statistics and the logging facilities.
        ############################################################################
        # Tensorboard
        with model_specific.strategy.scope():
            checkpoint = tf.train.Checkpoint(optimizer=optimizer, model=model)
        saver = Saver(instance_output_dir, checkpoint)
        train_log_dir = os.path.join(instance_output_dir, "tensorboard",
                                     "train")
        eval_log_dir = os.path.join(instance_output_dir, "tensorboard", "eval")
        flags_log_dir = os.path.join(instance_output_dir, "tensorboard",
                                     "params")
        writers = dict(train=tf.summary.create_file_writer(train_log_dir),
                       eval=tf.summary.create_file_writer(eval_log_dir),
                       flags=tf.summary.create_file_writer(flags_log_dir))
        with writers["flags"].as_default():
            tf.summary.text(
                "Flags",
                # Tensorboard takes Markdown:
                json.dumps(flags_dict, indent=4).replace("\n", "\n\n"),
                step=0)

        # Different information to log.
        ma_loss = dict(train=utils.MovingAverage(0.9),
                       eval=utils.MovingAverage(0.9))
        step_counters = dict(train=0, eval=0)
        batch_counters = dict(train=0, eval=0)
        prev_batch_end = time.time()

        ############################################################################
        # Create the Eval DS object.
        # ==========================================================================
        # The eval ds has no real concept of epoch, repeats forever, shuffling
        # each time it reaches its end.
        ############################################################################
        # Create
        with utils.log_duration(LOGGER, "main", "All of make_eval_dataset"):
            eval_ds_instance = make_eval_dataset(random_seed=rg.integers(
                -2**63, 2**63 - 1), )
        # Maybe distribute
        LOGGER.debug("Distributing the eval dataset to the replicas.")
        if FLAG_DATASET_TYPE.value == "tfr":
            eval_ds_instance = (
                model_specific.strategy.experimental_distribute_dataset(
                    eval_ds_instance))
        # Start the iteration. We step by calling `next(...)`.
        LOGGER.debug("Done distributing the eval dataset to the replicas.")
        eval_ds_instance = iter(eval_ds_instance)
        step_function = dict(train=training_step, eval=evaluation_step)

        ############################################################################
        # Training Loop
        # ==========================================================================
        # Create a new training dataset object that lasts for one epoch.
        # This is different from the eval training dataset object, which loops
        # forever.
        ############################################################################
        for epoch in itertools.count():
            ##########################################################################
            # Epoch Setup
            ##########################################################################
            LOGGER.debug("EPOCH %d START", epoch)
            # Shuffle differently every epoch
            with utils.log_duration(LOGGER, "main",
                                    "All of make_training_dataset"):
                train_ds_instance = make_training_dataset(
                    random_seed=rg.integers(-2**63, 2**63 - 1), )
            LOGGER.debug(
                "Attempting to distribute the training dataset to the replicas."
            )
            if FLAG_DATASET_TYPE.value == "tfr":
                train_ds_instance = (
                    model_specific.strategy.experimental_distribute_dataset(
                        train_ds_instance))

            LOGGER.debug(
                "Done distributing the training dataset to the replicas.")
            train_ds_instance = iter(train_ds_instance)

            # To change splits, we use `itertools.islice` over the dataset generator.
            # When the training dataset generator is done, a new loop of the following
            # while loop occurs, but no training batch is done because we are taking
            # an `islice` of a generator that is done.
            did_at_least_one_training_batch = True
            split = "eval"
            while did_at_least_one_training_batch:
                utils.check_operator(operator.ne,
                                     tf_utils.current_accelerator_type(),
                                     "CPU")

                # Invert split
                if split == "train":
                    split = "eval"
                else:
                    split = "train"

                # Prepare to test if we did at least one training batch
                if split == "train":
                    did_at_least_one_training_batch = False

                ########################################################################
                # Take slices from the dataset iterator
                # ======================================================================
                # We only want to do a certain number of batches before switching splits
                # We do this by using an `itertools.islice` of the dataset iterators.
                ########################################################################
                if split == "train":
                    dataset_iterator = toolz.take(
                        FLAG_BATCHES_BETWEEN_EVALS.value, train_ds_instance)
                else:
                    # The evaluation dataset generator is infinite, reshuffles everytime
                    # it gets to its end.
                    # Still, we take a fixed size slice form that infinite generator.
                    dataset_iterator = toolz.take(
                        FLAG_NUMBER_EVAL_BATCHES.value, eval_ds_instance)

                LOGGER.debug("Batching")
                for batch in dataset_iterator:
                    if FLAG_LOG_SAMPLES.value:
                        ####################################################################
                        # Print elements of the dataset
                        ####################################################################
                        # Make ourselves resistant to values possibly being a PerReplica
                        # object
                        LOGGER.warning(
                            f"%(red)sLOGGING SAMPLES. THIS IS VERY SLOW.%(reset)s",
                            dict(
                                red=colorama.Fore.RED,
                                reset=colorama.Style.RESET_ALL,
                            ))
                        is_distributed = isinstance(batch["input_ids"],
                                                    values.PerReplica)
                        for in_batch_idx in range(FLAG_BATCH_SIZE.value):
                            for replica_idx in (range(actual_num_replicas)
                                                if is_distributed else [0]):
                                if is_distributed:
                                    sample = {
                                        k: batch[k].values[replica_idx]
                                        for k in batch
                                    }
                                else:
                                    sample = batch

                                # input_sentence = tokenizer.decode(
                                #   [x for x in sample["input_ids"][i] if x != tokenizer.eos_token_id]
                                # )

                                # LOGGER.debug(
                                #   "%sInput [%d / %d]%s:\n\"%s\"",
                                #   colorama.Fore.GREEN,
                                #   replica_idx + 1,
                                #   actual_num_replicas,
                                #   colorama.Style.RESET_ALL,
                                #   input_sentence,
                                # )
                                #
                                # answer = tokenizer.decode(
                                #   [(x if x != -100 else 0) for x in sample["label_ids"][i]]
                                # )
                                # LOGGER.debug(
                                #   "%sLabel [%d / %d]%s:\n\"%s\"",
                                #   colorama.Fore.GREEN,
                                #   replica_idx + 1,
                                #   actual_num_replicas,
                                #   colorama.Style.RESET_ALL,
                                #   answer,
                                # )

                                cons = console.Console()
                                sentences = table.Table()
                                sentences.add_column("BPE Index",
                                                     justify="center")
                                sentences.add_column("Inputs",
                                                     justify="center")
                                sentences.add_column("Labels",
                                                     justify="center")
                                for bpe_idx, (x, y) in enumerate(
                                        itertools.zip_longest(
                                            sample["input_ids"]
                                            [in_batch_idx].numpy(),
                                            sample["label_ids"]
                                            [in_batch_idx].numpy(),
                                            fillvalue=None,
                                        )):
                                    x_w = tokenizer.decode(
                                        [x]) if x >= 0 else f"[ {x} ]"
                                    y_w = tokenizer.decode(
                                        [y]) if y >= 0 else f"[ {y} ]"
                                    sentences.add_row(str(bpe_idx), x_w, y_w)

                                cons.print(sentences)

                    # We only care about training epochs as, obviously, we don't train
                    # over eval samples; the number of  eval samples seen only
                    # contributes to lowering the variance in the evaluation of when to
                    # do early stopping.
                    if split == "train":
                        did_at_least_one_training_batch = True

                    input_ids = batch["input_ids"]
                    label_ids = batch["label_ids"]

                    # Per split step counter
                    step_counters[
                        split] += FLAG_BATCH_SIZE.value * actual_num_replicas
                    batch_counters[split] += 1

                    ######################################################################
                    # Model step function.
                    ######################################################################
                    step_function_kwargs = dict(
                        input_ids=input_ids,
                        label_ids=label_ids,
                    )

                    utils.print_mem(f"[{split}] - Mem before `strategy.run`",
                                    LOGGER)
                    LOGGER.debug("[%s] - Calling `strategy.run`", split)
                    loss = model_specific.strategy.run(
                        step_function[split], kwargs=step_function_kwargs)
                    LOGGER.debug("[%s] - Done `strategy.run`", split)
                    utils.print_mem(f"[{split}] - Mem after `strategy.run`",
                                    LOGGER)

                    ####################################################################
                    # End of logging step code / Logging and saving the model.
                    ####################################################################
                    if (FLAG_DISTRIBUTE_MODE.value
                            in constants.PURE_DATA_PARALLEL_STRATEGIES):
                        utils.check_equal(len(loss.values),
                                          actual_num_replicas)
                        LOGGER.debug("[%s] - Real num replicas: %s", split,
                                     actual_num_replicas)
                        average_loss = float(
                            tf.math.reduce_mean(loss.values).numpy())

                        LOGGER.debug("[%s] - Loss: %s", str(split),
                                     str(average_loss))

                    else:
                        average_loss = float(loss.numpy())

                    tf.debugging.check_numerics(
                        loss.values if isinstance(loss, values.PerReplica) else
                        loss, "Numerics failed.")

                    now = time.time()
                    batch_duration = now - prev_batch_end
                    prev_batch_end = now
                    ma_loss[split].update(average_loss)

                    LOGGER.info("[%s] - Epoch: # %d", split, epoch)
                    LOGGER.info("[%s] - Tensorboard_dir: %s", split,
                                instance_output_dir)
                    LOGGER.info("[%s] - Batch: # %d", split,
                                batch_counters[split])
                    LOGGER.info("[%s] - Step:  # %d", split,
                                step_counters[split])
                    if FLAG_USE_SUBSET.value:
                        LOGGER.warning(">> USING A SUBSET OF THE DATASET <<")
                    LOGGER.info(
                        "[%(split)s] - Batch loss:           %(metric)f",
                        dict(split=split, metric=average_loss))
                    LOGGER.info(
                        "[%(split)s] - Moving average loss:  %(metric)f",
                        dict(split=split, metric=ma_loss[split].average))
                    LOGGER.info(
                        "[%(split)s] - Moving average ppl:   %(metric)f",
                        dict(split=split,
                             metric=np.exp(ma_loss[split].average)))
                    LOGGER.info(
                        "[%(split)s] - Batch duration:       %(duration)s",
                        dict(split=split,
                             duration=utils.TimeStamp.from_seconds(
                                 batch_duration).format()))

                    # Write to Tensorboard
                    with writers[split].as_default():
                        tf.summary.scalar(f"Loss/{split}", average_loss,
                                          step_counters[split])
                        tf.summary.scalar(f"PPL/{split}", np.exp(average_loss),
                                          step_counters[split])
                    writers[split].flush()

                    ######################################################################
                    # Save every `FLAG_SAVE_PERIOD_MIN.value` minutes.
                    ######################################################################
                    delta_sec = time.time() - timestamp_last_ckpt_secs
                    utils.check_operator(operator.gt, delta_sec, 0)
                    period_sec = 60 * FLAG_SAVE_PERIOD_MIN.value
                    utils.check_operator(operator.gt, period_sec, 0)
                    ratio = delta_sec / period_sec
                    LOGGER.info(
                        "[%(split)s] - RATIO:                  %(ratio)s",
                        dict(split=split, ratio=str(ratio)))
                    LOGGER.info(
                        "[%(split)s] - Target: %(target)s, Present: %(present)s",
                        dict(
                            split=split,
                            target=str(period_sec),
                            present=str(delta_sec),
                        ))

                    if ratio >= 1:
                        dur = delta_sec / 60
                        timestamp_last_ckpt_secs = time.time()
                        LOGGER.debug(
                            "SAVING MODEL - CAUSE: DURATION - %0.2f min", dur)
                        # checkpoint.save(ckpt_prefix)
                        saver.save_model(
                            train_steps=step_counters["train"],
                            model_or_replicas=model,
                            optimizer=optimizer,
                        )

        ############################################################################
        # Post Training Cleanup
        ############################################################################
        for writer in writers.values():
            writer.close()
Exemplo n.º 6
0
def _prepare_samples_w_retrieval(
        split, batch_size, question_ids_inputs: tf_utils.TFTensorType,
        answer_ids_inputs: tf_utils.TFTensorType,
        gpt2_tokenized_retrieved: tf_utils.TFTensorType, distances,
        num_retrievals_to_use, temperature, context_size, enable_debug_checks,
        use_helper_words, helper_word_token_ids, max_generation_length):
    utils.check_contained(use_helper_words,
                          constants.HelperWordModeChoices.choices())
    """Prepares the samples that use retrieval.
  In regards to helper words, we only use them once. This could be changed.
  It would have many advantages.
  """
    assert (split == constants.SplitChoices.test) == (
        answer_ids_inputs is None), (split == constants.SplitChoices.test,
                                     answer_ids_inputs)

    tokenizer = transformers.AutoTokenizer.from_pretrained("gpt2-xl")
    # panel_title = "Begining of _prepare_samples_w_retrieval"
    # panel_text = [f"{question_ids_inputs.shape = }"]
    # panel_text += [f"{question_ids_inputs.row_lengths(axis=-1) = }"]
    # panel_text += [f"{answer_ids_inputs.shape = }"]
    # panel_text += [f"{answer_ids_inputs.row_lengths(axis=-1) = }"]
    # panel_text += [f"{distances.shape = }"]
    # panel_text += [f"{gpt2_tokenized_retrieved.shape = }"]
    # panel_text += [f"{gpt2_tokenized_retrieved.row_lengths(axis=-1) = }"]
    # print(rich.panel.Panel("\n\n".join(panel_text), title=panel_title))
    is_not_test = split != constants.SplitChoices.test

    if not isinstance(question_ids_inputs, tf.RaggedTensor):
        question_ids_inputs = tf.RaggedTensor.from_tensor(
            question_ids_inputs, padding=constants.RAGGED_PADDING_ID)

    if enable_debug_checks:
        asserts = []
        asserts.append(
            tf.Assert(
                tf.math.reduce_all(
                    question_ids_inputs != constants.RAGGED_PADDING_ID, ),
                [question_ids_inputs.to_tensor()]))
        if is_not_test:
            asserts.append(
                tf.Assert(
                    tf.math.reduce_all(
                        answer_ids_inputs != constants.RAGGED_PADDING_ID, ),
                    [answer_ids_inputs.to_tensor()]))
        with tf.control_dependencies(asserts):
            question_ids_inputs = tf.identity(question_ids_inputs)

    # These checks are at graph composition time, so OK
    utils.check_isinstance(question_ids_inputs, tf.RaggedTensor)

    if is_not_test:
        utils.check_isinstance(answer_ids_inputs, tf.RaggedTensor)

    ##############################################################################
    # Sample from the possible retrievals
    ##############################################################################
    # Choose the indices
    selected_context_indices = tf_utils.sample_without_replacement(
        distances / temperature, num_retrievals_to_use)

    # Concatenate the retrievals
    utils.check_isinstance(helper_word_token_ids, dict)
    utils.check_isinstance(
        helper_word_token_ids['context'],
        tuple([np.ndarray] + list(tf_utils.TfTensorTypeTuple)))

    concat_retrieved = _tokenize_and_concat_while_loop(
        gpt2_tokenized_retrieved,
        selected_context_indices=selected_context_indices,
        batch_size=batch_size,
        num_retrievals_to_use=num_retrievals_to_use,
        helper_word_mode=use_helper_words,
        context_helper_word_tokens=helper_word_token_ids['context'],
    )

    if use_helper_words == constants.HelperWordModeChoices.once:
        concat_retrieved = tf.concat([
            helper_word_token_ids["context"],
            concat_retrieved,
        ],
                                     axis=1)
    # _print_info(
    #   concat_retrieved,
    #   f"Num of 'context' helper words. Mode: {use_helper_words}",
    #   tokenizer,
    #   helper_word_token_ids
    # )

    # Cut the lengths down to max_lens_retrieval.
    # The eventual length of the ["question"] helper_tokens is included in
    # question_ids_inputs.
    if is_not_test:
        max_lens_retrieval = (
            context_size * tf.ones(
                shape=(batch_size, ),
                dtype=tf.int64,
            ) - (
                question_ids_inputs.row_lengths() +
                # We always generate the same length of text.
                max_generation_length +  # answer_ids_inputs.row_lengths() +
                (helper_word_token_ids["answer"].shape[1]
                 if use_helper_words else 0)))

    else:
        max_lens_retrieval = (context_size * tf.ones(
            shape=(batch_size, ),
            dtype=tf.int64,
        ) - (question_ids_inputs.row_lengths() + max_generation_length +
             (helper_word_token_ids["answer"].shape[1]
              if use_helper_words else 0)))

    concat_retrieved = tf.ragged.boolean_mask(
        concat_retrieved, (tf.ragged.range(concat_retrieved.row_lengths()) <
                           tf.expand_dims(max_lens_retrieval, axis=1)))
    panel_text = []
    panel_text += [f"{selected_context_indices.shape = }"]
    panel_text += [f"{concat_retrieved.shape = }"]
    panel_text += [f"{concat_retrieved.row_lengths(axis=-1) = }"]
    panel_text += [f"{max_lens_retrieval = }"]
    print(rich.panel.Panel("\n\n".join(panel_text)))

    if enable_debug_checks:
        asserts = [
            tf.Assert(tf.math.reduce_all(max_lens_retrieval < context_size),
                      [max_lens_retrieval, context_size]),
        ]
        with tf.control_dependencies(asserts):
            concat_retrieved = tf.identity(concat_retrieved)

    if use_helper_words:
        if is_not_test:
            new_input_ids = tf.concat([
                question_ids_inputs, concat_retrieved,
                helper_word_token_ids["answer"], answer_ids_inputs
            ],
                                      axis=1)
            new_label_ids = tf.concat([
                -100 * tf.ones_like(question_ids_inputs),
                -100 * tf.ones_like(concat_retrieved),
                -100 * tf.ones_like(helper_word_token_ids["answer"]),
                answer_ids_inputs
            ],
                                      axis=1)
        else:
            new_input_ids = tf.concat([
                question_ids_inputs,
                concat_retrieved,
                helper_word_token_ids["answer"],
            ],
                                      axis=1)
    else:
        if is_not_test:
            new_input_ids = tf.concat(
                [question_ids_inputs, concat_retrieved, answer_ids_inputs],
                axis=1)
            new_label_ids = tf.concat([
                -100 * tf.ones_like(question_ids_inputs),
                -100 * tf.ones_like(concat_retrieved), answer_ids_inputs
            ],
                                      axis=1)
        else:
            new_input_ids = tf.concat([
                question_ids_inputs,
                concat_retrieved,
            ],
                                      axis=1)

    new_input_ids: tf.RaggedTensor
    return new_input_ids, new_label_ids if is_not_test else None