Exemplo n.º 1
0
def validate(values):
    """Validate the values in the input widget
    
    Parameters
    ----------
    values : list
             inputs from layout widgets based on input index

    """
    v = ["" for k in inputmap.keys()]
    #v[0] = checkpath(values[0])
    v[1] = checkpath(values[1])
    v[2] = checkpath(values[2])

    if values[3] not in ['.tif', '.nd2', '.lsm', '.czi']:
        v[3] = "unknown file extension"

    v[4] = checktype(values[4], int, "Can't convert to int")
    if not v[4]:
        if int(values[4]) <= 0:
            v[4] = "Channels start at 1"

    v[5] = checktype(values[5], int, "Can't convert to int")
    v[5] = checktype(values[5], int, "Can't convert to int")
    v[6] = checktype(values[6], int, "Can't convert to int")
    v[7] = checktype(values[7], int, "Can't convert to int")
    v[8] = checktype(values[8], int, "Can't convert to int")
    v[9] = checktype(values[9], int, "Can't convert to int")
    v[10] = checktype(values[10], int, "Can't convert to int")
    v[11] = checktype(values[11], float, "Can't convert to float")
    v[12] = checktype(values[12], float, "Can't convert to float")
    v[13] = checktype(values[13], float, "Can't convert to float")

    return v
Exemplo n.º 2
0
 def __init__(self, FLAGS):
     self.FLAGS = FLAGS
     self.model_out_dir = "../Model"
     self.log_dir = "../Log"
     utils.checkpath(self.model_out_dir)
     utils.checkpath(self.log_dir)
     self.callback = TensorBoard(self.log_dir)
     shutil.copy('./bin/plotboard.py', self.log_dir)
     shutil.copy('./bin/run.bat', self.log_dir)
Exemplo n.º 3
0
def main(args):
    # Create output directory
    checkpath(args.out_path)

    # list all files end with jpg, args.in_path should contain a folder with name imgs for jpg files
    # and a folder with name pointlines for pkl files.
    input_paths_train = sorted(glob(os.path.join(args.in_path, '{}/*.jpg'.format("imgs/train"))))
    input_paths_test = sorted(glob(os.path.join(args.in_path, '{}/*.jpg'.format("imgs/test"))))
    if len(input_paths_train) == 0 or len(input_paths_test) == 0:
        raise Exception("No images are found in {}".format(args.in_path))

    # filter out outdoor images labeled by us, this is optinal
    outdoor_list_train = os.path.join(args.in_path, 'outdoor_list_train.txt')
    outdoor_list_test = os.path.join(args.in_path, 'outdoor_list_test.txt')

    with open(outdoor_list_train,'r') as fp:
	    outdoor_train = fp.readlines()
    # the last one doesn't contain the '\n' so processed seperately
    outdoor_names_train = [ p[:-2] for p in outdoor_train if len(p) > 9]
    outdoor_names_train += [outdoor_train[-1][:-1]]
    print(len(outdoor_names_train))

    with open(outdoor_list_test,'r') as fp:
	    outdoor_test = fp.readlines()
    outdoor_names_test = [ p[:-2] for p in outdoor_test if len(p) > 9]
    outdoor_names_test += [outdoor_test[-1][:-1]]

    data = []
    data_train = []
    data_test = []

    # save training data
    for fname in input_paths_train:
        # retrive the index name of the image
        basename = fname.split('/')[-1].split('.')[0]
        if basename not in outdoor_names_train:
            filename = os.path.join(args.in_path, 'pointlines/{}.pkl'.format(basename))
            _ = process(args.uni_wf, args.img_size, args.out_path, filename, mode='Train')
            item = (filename, 'Train')
            data_train.append(item)
            data.append(item)

    # save test data
    for fname in input_paths_test:
        # retrieve the index name of the image
        basename = fname.split('/')[-1].split('.')[0]
        if basename not in outdoor_names_test:
            filename = os.path.join(args.in_path, 'pointlines/{}.pkl'.format(basename))
            _ = process(args.uni_wf, args.img_size, args.out_path, filename, mode='Test')
            item = (filename, 'Test')
            data_test.append(item)
            data.append(item)

    print("The length of the dataset is: {}".format(len(data)))
    print("The length of the training set is: {}".format(len(data_train)))
    print("The length of the test set is: {}".format(len(data_test)))
    print('finished preprocessing data')
Exemplo n.º 4
0
def process(uni_wf, out_size, out_path, filename, mode):
    # get output paths for preprocessed imgs and wireframes
    basename = filename.split('/')[-1].split('.')[0]
    wf_dir_train = os.path.join(out_path, 'wireframes/train')
    checkpath(wf_dir_train)
    img_dir_train = os.path.join(out_path, 'images/train')
    checkpath(img_dir_train)

    wf_dir_test = os.path.join(out_path, 'wireframes/test')
    checkpath(wf_dir_test)    
    img_dir_test = os.path.join(out_path, 'images/test')
    checkpath(img_dir_test)

    with open(filename, 'rb') as f:
        target = pickle.load(f, encoding='latin1')
        img = target['img']
        h, w, _ = img.shape
        img_size = np.array((w, h))
        img = cv2.resize(img, (out_size, out_size), interpolation=cv2.INTER_AREA)
        if mode == 'Train':
            img_dir = os.path.join(img_dir_train, '{}.png'.format(basename))
        elif mode == 'Test':
            img_dir = os.path.join(img_dir_test, '{}.png'.format(basename))
        cv2.imwrite(img_dir, img)

        points = target['points']
        lines = target['lines']
        wf = np.zeros((out_size, out_size))

        for i, j in lines:
            start = np.array( points[i] ) * out_size / img_size
            end = np.array( points[j] ) * out_size / img_size
            if uni_wf:
                # use unified intensity
                dist = 1
            else:
                # different intensity represents different dists, optional and haven't been thoroughly tested
                dist = np.linalg.norm(end - start) / (out_size * np.sqrt(2))
                if dist < 0.1:
                    dist = 0.2
                elif dist > 0.5:
                    dist = 1
                else:
                    dist = dist * 2
            # haven't experimented with antialiased lines, user can optinally try lineType=cv2.LINE_AA
            wf = cv2.line(wf, intx(start, out_size), intx(end, out_size), 255 * dist, 1, lineType=cv2.LINE_8)

        if mode == 'Train':
            save_dir = os.path.join(wf_dir_train, '{}.png'.format(basename))
        elif mode == 'Test':
            save_dir = os.path.join(wf_dir_test, '{}.png'.format(basename))

        cv2.imwrite(save_dir, wf)

    return wf
Exemplo n.º 5
0
    def __init__(self, FLAGS, LOGGER):
        self.input_size = (60, 60)  # image (input the GAN) size, must be times of 2^4
        self.class_num = 36

        self.FLAGS = FLAGS
        self.val_ratio = FLAGS.val_ratio
        self.batch_size = FLAGS.batch_size

        #%% input dirs
        self.data_dir = os.path.join('..', 'Data')
        self.train_dir = os.path.join('..', 'Data', 'DataTrain')
        # self.test_dir = os.path.join('..', 'Data', 'DataTest')

        #%% output dirs
        self.split_record_dir = os.path.join(LOGGER.log_dir, 'SplitRecord')
        utils.checkpath(self.split_record_dir)

        #%% record data list and split
        self._read_data_list()

        #%% implement batch fetcher
        self.train_batch_fetcher = TrainBatchFetcher(self.train_names, self.batch_size)
Exemplo n.º 6
0
 def __init__(self, FLAGS):
     self.FLAGS = FLAGS
     self.img_out_dir = "../TrainResult"
     self.model_out_dir = "../Model"
     self.log_dir = "../Log"
     utils.checkpath(self.img_out_dir)
     utils.checkpath(self.model_out_dir)
     utils.checkpath(self.log_dir)
     self.callback = TensorBoard(self.log_dir)
Exemplo n.º 7
0
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from skimage import filters
from skimage.morphology import disk,square
from skimage.measure import regionprops
import skimage.morphology as sm
import utils
import time

time_start=time.time()
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"

#%%
inputdir = os.path.join('.', 'TestData')
outputdir = os.path.join('.', 'TestResults')
utils.checkpath(outputdir)
filenames = utils.all_files_under(inputdir)


#%% load model
modelfile = os.path.join('.','Pretrained','Model.json')
weightsfile = os.path.join('.','Pretrained','Weights.h5')
model = utils.loadmodel(modelfile, weightsfile)

all_num = len(filenames)
pre_num = 0
acc_num = 0
setFont = ImageFont.truetype('C:/windows/fonts/Arial.ttf', 60)
fillColor = "#000000"
REFSTR = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ'
Exemplo n.º 8
0
def fit_mlh(model, problems, data, name,
            fixed={}, fitting={}, niter=5,
            outdir='.', method='Nelder-Mead', save=True, quiet=False):
    """Use maximum likelihood to fit CHASE model"""
    sim_id = sim_id_str(name, fixed, fitting)
    checkpath(outdir)

    cols = ['iteration', 'success', 'nllh', 'k', 'N', 'bic']

    # get range of thetas for grid search
    thetas = filter(lambda k: k.count('theta') > 0, fitting.keys())
    if len(thetas) > 0:
        theta_min, theta_max = fitting['theta']
        theta_prod = map(list, list(product(range(theta_min, theta_max + 1), repeat=len(thetas))))
        cols += thetas
    else:
        theta_prod = [[fixed['theta']]]
        cols += ['theta']

    rest = filter(lambda p: p.count('theta')==0, fitting.keys())
    rest.sort()
    cols += rest

    # determine number of parameters and observations
    k = len(fitting)
    N = data.shape[0]

    # create fit table
    arr = []
    for i in range(niter):
        for th in theta_prod:
            arr.append([i, np.nan, np.nan, k, N, np.nan] + th + [np.nan for _ in range(k - len(thetas))])
    fitdf = pd.DataFrame(arr, columns=cols)

    # iterate through parameter combinations
    for i, row in fitdf.iterrows():

        # update pars with current values of theta
        pars = deepcopy(fixed)
        for th in thetas:
            pars[th] = row[th]

        pars['fitting'] = OrderedDict([(p, fitting[p]) for p in rest])

        # if theta=1, can't fit tau
        if len(thetas)==1 and row[th]==1 and 'tau' in pars['fitting'] and 'stepsize' not in fixed:
            del pars['fitting']['tau']


        init = []
        for p in pars['fitting']:
            # if fitting normal stopping distribution, initialize at mean
            if p=='mu':
                init.append(data.samplesize.mean())
            else:
                init.append(uniform(fitting[p][0], fitting[p][1]))

        # fit!
        f = minimize(model.nloglik_opt, init, (problems, data, pars,),
                     method=method, options={'ftol': .001})

        fitdf.ix[i,'success'] = f['success']
        fitdf.ix[i,'nllh'] = f['fun']
        fitdf.ix[i,'bic'] = bic(f['fun'], k, N)
        for v, p in enumerate(pars['fitting'].keys()):
            fitdf.ix[i,p] = f['x'][v]

        if not quiet:
            print sim_id
            print '%s/%s' % (i, fitdf.shape[0])
            print '%s: %s' % (thetas, row[thetas].values)
            print fitdf.ix[i]

    # save the table
    if save: fitdf.to_csv('%s/%s.csv' % (outdir, sim_id))
    return fitdf
Exemplo n.º 9
0
def main(args):
    # set which gpu(s) to use, should set PCI_BUS_ID first
    os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
    num_gpus = (len(args.gpu) + 1) // 2

    # create model directories
    checkpath(args.modelG_path)
    checkpath(args.modelD_path)

    # tensorboard writer
    checkpath(args.log_path)
    writer = SummaryWriter(args.log_path)

    # load data
    data_loader, num_train = get_loader(args,
                                        batch_size=args.batch_size,
                                        shuffle=True,
                                        num_workers=args.num_workers,
                                        training=True)
    data_loader_val, num_test = get_loader(args,
                                           batch_size=args.val_bs,
                                           shuffle=False,
                                           num_workers=args.num_workers,
                                           training=False)
    print('Finished data loading')
    print("The length of the train set is: {}".format(num_train))
    print("The length of the test set is: {}".format(num_test))

    colorguide = True
    if args.nocolor:
        colorguide = False

    # loss multipliers
    lambdas = [
        args.lambda_imgl1, args.lambda_wfl1, args.lambda_ssim,
        args.lambda_color
    ]
    lambda_perceptual = args.lambda_perceptual

    # Generator
    netG = Generator(lambdas=lambdas,
                     colorguide=colorguide,
                     input_nc=1,
                     output_nc=1)

    if num_gpus > 1:
        # multi-gpu training with synchonized batchnormalization
        # make sure enough number of gpus are available
        assert (torch.cuda.device_count() >= num_gpus)
        # since we have set CUDA_VISIBLE_DEVICES to avoid some invalid device id issues
        netG = DataParallelWithCallback(
            netG, device_ids=[i for i in range(num_gpus)])
        netG_single = netG.module
    else:
        # single gpu training
        netG_single = netG

    # Discriminator
    netD = NLayerDiscriminator(input_nc=4, n_layers=4)
    if num_gpus > 1:
        netD = DataParallelWithCallback(
            netD, device_ids=[i for i in range(num_gpus)])
        netD_single = netD.module
    else:
        netD_single = netD

    # print(netG_single)
    # print(netD_single)

    if args.pretrained and args.netG_path != '' and args.netD_path != '':
        netG_single.load_state_dict(torch.load(args.netG_path))
        netD_single.load_state_dict(torch.load(args.netD_path))

    # Right now we only support gpu training
    if torch.cuda.is_available():
        netG = netG.cuda()
        netD = netD.cuda()

    # define the perceptual loss, place outside the forward func in G for better multi-gpu training
    Ploss = PNet()
    if num_gpus > 1:
        Ploss = DataParallelWithCallback(
            Ploss, device_ids=[i for i in range(num_gpus)])

    if torch.cuda.is_available():
        Ploss = Ploss.cuda()

    # setup optimizer
    lr = args.learning_rate
    optimizerD = optim.Adam(netD_single.parameters(),
                            lr=lr,
                            betas=(args.beta1, 0.999))
    schedulerD = ReduceLROnPlateau(optimizerD,
                                   factor=0.7,
                                   patience=10,
                                   mode='min',
                                   min_lr=1e-06)
    optimizerG = optim.Adam(netG_single.parameters(),
                            lr=lr,
                            betas=(args.beta1, 0.999))
    schedulerG = ReduceLROnPlateau(optimizerG,
                                   factor=0.7,
                                   patience=10,
                                   mode='min',
                                   min_lr=1e-06)

    for epoch in range(args.num_epochs):
        # switch to train mode
        netG.train()
        netD.train()

        for i, (img_real, wf_real, color_real) in enumerate(data_loader, 0):
            img_real = img_real.cuda()
            wf_real = wf_real.cuda()
            color_real = color_real.cuda()

            # Update D network, we freeze parameters in G to save memory
            for p in netG_single.parameters():
                p.requires_grad = False
            for p in netD_single.parameters():
                p.requires_grad = True

            # if using TTUR, D can be trained multiple steps per G step
            for _ in range(args.D_steps):
                optimizerD.zero_grad()

                # train with real
                real_AB = torch.cat((img_real, wf_real), 1)
                errD_real = 0.5 * netD(trainG=False,
                                       trainReal=True,
                                       real_AB=real_AB,
                                       fake_AB=None).sum()
                errD_real.backward()

                # train with fake
                img_fake, wf_fake, _, _, _, _, _ = netG(trainG=False,
                                                        img_real=None,
                                                        wf_real=wf_real,
                                                        color_real=color_real)
                fake_AB = torch.cat((img_fake, wf_fake), 1)
                errD_fake = 0.5 * netD(trainG=False,
                                       trainReal=False,
                                       real_AB=None,
                                       fake_AB=fake_AB).sum()
                errD_fake.backward()

                errD = errD_real + errD_fake
                optimizerD.step()
                del img_fake, wf_fake, fake_AB, real_AB, errD_real, errD_fake

            iterations_before_epoch = epoch * len(data_loader)
            writer.add_scalar('D Loss', errD.item(),
                              iterations_before_epoch + i)
            del errD

            # Update G network, we freeze parameters in D to save memory
            for p in netG.parameters():
                p.requires_grad = True
            for p in netD.parameters():
                p.requires_grad = False

            optimizerG.zero_grad()

            img_fake, wf_fake, lossG, wf_ssim, img_l1, color_l1, wf_l1 = netG(
                trainG=True,
                img_real=img_real,
                wf_real=wf_real,
                color_real=color_real)
            ploss = Ploss(img_fake, img_real.detach()).sum()
            fake_AB = torch.cat((img_fake, wf_fake), 1)
            lossD = netD(trainG=True,
                         trainReal=False,
                         real_AB=None,
                         fake_AB=fake_AB).sum()
            errG = (lossG.sum() + lambda_perceptual * ploss + lossD)
            errG.backward()
            optimizerG.step()

            del color_real, fake_AB, lossG, errG

            if args.nocolor:
                print(
                    'Epoch: [{}/{}] Iter: [{}/{}] PercLoss : {:.4f} ImageL1 : {:.6f} WfL1 : {:.6f} WfSSIM : {:.6f}'
                    .format(epoch, args.num_epochs, i, len(data_loader),
                            ploss.item(),
                            img_l1.sum().item(),
                            wf_l1.sum().item(),
                            num_gpus + wf_ssim.sum().item()))
            else:
                print(
                    'Epoch: [{}/{}] Iter: [{}/{}] PercLoss : {:.4f} ImageL1 : {:.6f} WfL1 : {:.6f} WfSSIM : {:.6f} ColorL1 : {:.6f}'
                    .format(epoch, args.num_epochs, i, len(data_loader),
                            ploss.item(),
                            img_l1.sum().item(),
                            wf_l1.sum().item(),
                            num_gpus + wf_ssim.sum().item(),
                            color_l1.sum().item()))
                writer.add_scalar('Color Loss',
                                  color_l1.sum().item(),
                                  iterations_before_epoch + i)

            # tensorboard log
            writer.add_scalar('G Loss', lossD.item(),
                              iterations_before_epoch + i)
            writer.add_scalar('Image L1 Loss',
                              img_l1.sum().item(), iterations_before_epoch + i)
            writer.add_scalar('Wireframe MSSSIM Loss',
                              num_gpus + wf_ssim.sum().item(),
                              iterations_before_epoch + i)
            writer.add_scalar('Wireframe L1',
                              wf_l1.sum().item(), iterations_before_epoch + i)
            writer.add_scalar('Image Perceptual Loss', ploss.item(),
                              iterations_before_epoch + i)

            del wf_ssim, ploss, img_l1, color_l1, wf_l1, lossD

            with torch.no_grad():
                # show generated tarining images in tensorboard
                if i % args.val_freq == 0:
                    real_img = vutils.make_grid(
                        img_real.detach()[:args.val_size],
                        normalize=True,
                        scale_each=True)
                    writer.add_image('Real Image', real_img,
                                     (iterations_before_epoch + i) //
                                     args.val_freq)
                    real_wf = vutils.make_grid(
                        wf_real.detach()[:args.val_size],
                        normalize=True,
                        scale_each=True)
                    writer.add_image('Real Wireframe', real_wf,
                                     (iterations_before_epoch + i) //
                                     args.val_freq)
                    fake_img = vutils.make_grid(
                        img_fake.detach()[:args.val_size],
                        normalize=True,
                        scale_each=True)
                    writer.add_image('Fake Image', fake_img,
                                     (iterations_before_epoch + i) //
                                     args.val_freq)
                    fake_wf = vutils.make_grid(
                        wf_fake.detach()[:args.val_size],
                        normalize=True,
                        scale_each=True)
                    writer.add_image('Fake Wireframe', fake_wf,
                                     (iterations_before_epoch + i) //
                                     args.val_freq)
                    del real_img, real_wf, fake_img, fake_wf

            del img_real, wf_real, img_fake, wf_fake

        # do checkpointing
        if epoch % args.save_freq == 0 and epoch > 0:
            torch.save(netG_single.state_dict(),
                       '{}/netG_epoch_{}.pth'.format(args.modelG_path, epoch))
            torch.save(netD_single.state_dict(),
                       '{}/netD_epoch_{}.pth'.format(args.modelD_path, epoch))

        # validation
        with torch.no_grad():
            netG_single.eval()
            # since we use a realtively large validation batchsize, we don't go through the who test set
            (img_real, wf_real, color_real) = next(iter(data_loader_val))
            img_real = img_real.cuda()
            wf_real = wf_real.cuda()
            color_real = color_real.cuda()

            img_fake, wf_fake, _, _, _, _, _ = netG_single(
                trainG=False,
                img_real=None,
                wf_real=wf_real,
                color_real=color_real)

            # update lr based on the validation perceptual loss
            val_score = Ploss(img_fake.detach(), img_real.detach()).sum()
            schedulerG.step(val_score)
            schedulerD.step(val_score)
            print('Current lr: {:.6f}'.format(
                optimizerG.param_groups[0]['lr']))

            real_img = vutils.make_grid(img_real.detach()[:args.val_size],
                                        normalize=True,
                                        scale_each=True)
            writer.add_image('Test: Real Image', real_img, epoch)
            real_wf = vutils.make_grid(wf_real.detach()[:args.val_size],
                                       normalize=True,
                                       scale_each=True)
            writer.add_image('Test: Real Wireframe', real_wf, epoch)
            fake_img = vutils.make_grid(img_fake.detach()[:args.val_size],
                                        normalize=True,
                                        scale_each=True)
            writer.add_image('Test: Fake Image', fake_img, epoch)
            fake_wf = vutils.make_grid(wf_fake.detach()[:args.val_size],
                                       normalize=True,
                                       scale_each=True)
            writer.add_image('Test: Fake Wireframe', fake_wf, epoch)

            netG_single.train()

            del img_real, real_img, wf_real, real_wf, img_fake, fake_img, wf_fake, fake_wf

    # close tb writer
    writer.close()
Exemplo n.º 10
0
def single_ac_train(env,
                    actor,
                    critic,
                    store_path='./',
                    batch_size=32,
                    epsilon=0.01,
                    save_interval=1000,
                    update_interval=1000,
                    learning_starts=200,
                    memory_size=50000,
                    max_epoch=100000,
                    max_iter=10000):
    event_path = os.path.join(store_path, 'actor_events')
    actor_model_path = os.path.join(store_path, 'actor_models')
    critic_model_path = os.path.join(store_path, 'critic_models')
    checkpath(event_path)
    checkpath(actor_model_path)
    checkpath(critic_model_path)

    actor.load_model(actor_model_path)
    critic.load_model(critic_model_path)

    summary_writer = SummaryWriter(event_path)
    memory_buffer = Memory(memory_size)
    results_buffer = ResultsBuffer()

    states = env.reset()

    for i in range(max_epoch):
        states = env.reset()
        episode_buffer = Episode_Record()
        episode_buffer.append('state', states)
        while True:
            actions = actor.get_action(states, epsilon)
            next_states, rewards, dones, info = env.step(actions)

            episode_buffer.append('reward', rewards)
            episode_buffer.append('action', actions)

            if dones:
                state_batch, reward_batch, action_batch = episode_buffer.dump()

                score_batch = critic.get_target(state_batch)
                target_batch = np.zeros_like(reward_batch)
                target_batch[-1] = reward_batch[-1]
                for idx in range(len(reward_batch) - 2, -1, -1):
                    target_batch[idx] = reward_batch[idx] + \
                        0.95 * target_batch[idx + 1]
                global_step, critic_summary, advantage_batch = critic.update(
                    state_batch, target_batch)

                # advantage_batch = np.zeros_like(reward_batch)
                # R = 0.0
                # for idx in range(len(reward_batch) - 1, -1, -1):
                #     R = R * 0.95 + reward_batch[idx]
                #     advantage_batch[idx] = R
                # advantage_batch -= np.mean(advantage_batch)
                # advantage_batch /= np.std(advantage_batch)
                actor_summary = actor.update(state_batch, action_batch,
                                             advantage_batch)
                # results_buffer.add_summary(summary_writer, global_step)
                actor.update_target()
                critic.update_target()
                # actor.save_model(actor_model_path, global_step)
                # critic.save_model(critic_model_path, global_step)
                print("Epoch {} earns a reward of {}.".format(
                    i, np.sum(reward_batch)))
                break
            else:
                episode_buffer.append('state', next_states)
                states = next_states
Exemplo n.º 11
0
def main(args):
    # by default we only consider single gpu inference
    assert (len(args.gpu) == 1)
    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu

    # load data
    data_loader_val, num_test = get_loader(args,
                                           batch_size=args.batch_size,
                                           shuffle=False,
                                           num_workers=args.num_workers,
                                           training=False)
    print('finished data loading')

    # Generator
    colorguide = True
    if args.nocolor:
        colorguide = False
    netG = Generator(lambdas=None,
                     colorguide=colorguide,
                     input_nc=1,
                     output_nc=1)

    netG.load_state_dict(torch.load(args.model_path))

    if torch.cuda.is_available():
        netG = netG.cuda()

    out_path = args.out_path
    checkpath(out_path)

    predictions_fid_real = []
    predictions_fid_fake = []
    fid_model = InceptionV3().cuda()
    fid_model.eval()
    Perceptual = PNet().cuda()

    avg_ssim = 0
    lpips = 0

    # validate on test set, TODO: test with single color guide image
    with torch.no_grad():
        netG.eval()
        for i, (img_real, wf_real,
                color_real) in enumerate(data_loader_val, 0):
            img_real = img_real.cuda()
            wf_real = wf_real.cuda()
            if colorguide:
                color_real = color_real.cuda()
            # in case we are in the last interation
            batch_size = img_real.size(0)

            img_fake, wf_fake, _, _, _, _, _ = netG(trainG=False,
                                                    img_real=None,
                                                    wf_real=wf_real,
                                                    color_real=color_real)

            ssim_score = ssim(img_real, img_fake).item() * batch_size
            avg_ssim += ssim_score

            lpips += Perceptual(img_real, img_fake) * batch_size

            # TODO: save generated wireframes
            save_singleimages(img_fake, out_path, i * args.batch_size,
                              args.img_size)

            pred_fid_real = fid_model(img_real)[0]
            pred_fid_fake = fid_model(img_fake)[0]
            predictions_fid_real.append(
                pred_fid_real.data.cpu().numpy().reshape(batch_size, -1))
            predictions_fid_fake.append(
                pred_fid_fake.data.cpu().numpy().reshape(batch_size, -1))

        print('SSIM: {:6f}'.format(avg_ssim / num_test))

        print('LPIPS: {:6f}'.format(lpips / num_test))

        predictions_fid_real = np.concatenate(predictions_fid_real, 0)
        predictions_fid_fake = np.concatenate(predictions_fid_fake, 0)
        fid = compute_fid_score(predictions_fid_fake, predictions_fid_real)
        print('FID: {:6f}'.format(fid))