def parse_documents(file_relative_path):
     config = utils.config_parser()
     destination_local_path = config.get('generic', 'corpus_download_path')
     try:
         es_connect = elasticsearch_connector.get_instance()
         # es_connect.clear_index()
     except:
         logger.exception("Cannot connect to elastic search")
     config = utils.config_parser()
     corpus_index = config.get('elasticsearch', 'corpus_index_name')
     number_of_indexed_files, no_of_files_having_indexing_error, files_having_indexing_error = \
         corpus_indexer.parse_and_index_documents(destination_local_path, es_connect, corpus_index, file_relative_path)
     corpus_indexer.clear_corpus_download_directory(destination_local_path)
     return number_of_indexed_files, no_of_files_having_indexing_error, files_having_indexing_error
 def set_egnyte_token(self,access_token):
     config = utils.config_parser()
     app_data = config.get('elasticsearch', 'app_data_index')
     document = {'token': access_token.decode('utf-8')}
     document_id = 'egnyte_token'
     self.insert_document(app_data, 'pptx', document_id, document)
     logger.info("Saved egnyte token to ElasticSearch")
Exemplo n.º 3
0
    def getLogger():

        if not os.path.exists("./logs"):
            os.mkdir("./logs")
        logging.basicConfig(
            format=
            "%(asctime)s [%(filename)-25.25s] [%(levelname)-5.5s]  %(message)s",
            handlers=[
                TimedRotatingFileHandler('./logs/log',
                                         when="midnight",
                                         interval=1,
                                         utc=False),
                logging.StreamHandler(),
            ])
        config = utils.config_parser()
        log_level = config.get('generic', 'log_level')

        logger = logging.getLogger()
        if log_level == "DEBUG":
            logger.setLevel(logging.DEBUG)

        if log_level == "INFO" or log_level == "":
            logger.setLevel(logging.INFO)

        if log_level == "ERROR":
            logger.setLevel(logging.ERROR)

        return logger
Exemplo n.º 4
0
 def create_document_preview_response(doc_id):
     config = utils.config_parser()
     corpus_index_name = config.get('elasticsearch', 'corpus_index_name')
     elastic_obj = elasticsearch_connector.get_instance()
     search_query = {
         "query": {
             "match": {
                 "_id": {
                     "query": doc_id
                 }
             }
         },
         "_source": {
             "includes": [
                 "file_name", "title", "url", "doc_type", "created_by",
                 "modified_by", "num_downloads", "ratings", "created_time",
                 "modified_time", "slides.page_number",
                 "slides.thumbnail_large"
             ]
         }
     }
     result = elastic_obj.generic_search_query(corpus_index_name,
                                               search_query)
     if result['hits']['hits']:
         return result['hits']['hits'][0]['_source']
     else:
         return {}
    def restore(backup_path, restore_thumbnail="True"):
        try:
            config = utils.config_parser()
            host = config.get('elasticsearch', 'host')
            port = config.get('elasticsearch', 'port')
            es_dump_auth = config.get('elasticsearch', 'es_dump_auth')
            doc_type = config.get('elasticsearch', 'doc_type')
            index_list = config.get('elasticsearch', 'backup_indices')

            output_ip = 'https://' + host + ":" + port

            for index in index_list.split(','):
                logger.info("Restoring index %s" % index)
                command = "NODE_TLS_REJECT_UNAUTHORIZED=0 elasticdump --input=" + backup_path + "/" + index + ".json" +" --headers '{\"Authorization\":\"Basic "+es_dump_auth+"\"}'"+ "   --output=" + output_ip + \
                          " --type=data --output-index=" + index + "/" + doc_type
                os.system(command)

            if restore_thumbnail == "True":
                dest_thumbnail_folder = config.get('generic', 'thumbnail_path')
                source_thumbnail_folder = backup_path + '/thumbnail.zip'
                if os.path.exists(dest_thumbnail_folder):
                    shutil.rmtree(dest_thumbnail_folder)

                shutil.unpack_archive(source_thumbnail_folder,
                                      dest_thumbnail_folder, 'zip')
                logger.info("Thumbnails are restored successfully.")
            else:
                logger.info("Thumbnails are not restored.")

        except Exception as e:
            logger.exception("Elasticsearch es_backup failed")
 def get_download_count_for_document(doc_id):
     config = utils.config_parser()
     index_name = config.get('elasticsearch', 'download_logs_index_name')
     es_obj = elasticsearch_connector.get_instance()
     search_query = {
         "aggs": {
             "user_download_aggregation": {
                 "filter": {
                     "term": {
                         "doc_id": doc_id
                     }
                 },
                 "aggs": {
                     "num_of_downloads": {
                         "terms": {
                             "field": "doc_id.keyword"
                         }
                     }
                 }
             }
         }
     }
     try:
         json_data = es_obj.generic_search_query(index_name, search_query)
         buckets = json_data['aggregations']["user_download_aggregation"][
             "num_of_downloads"]["buckets"]
         if buckets:
             return buckets[0]["doc_count"]
         else:
             return 0
     except:
         return 0
    def download_files_based_on_trigger(self, egnyte_uploaded_files):
        config = utils.config_parser()
        corpus_directory_path = config.get('egnyte', 'corpus_path')
        list_of_egnyte_files = egnyte_uploaded_files.split(',')
        count_of_files = len(list_of_egnyte_files)
        self.downloaded_files_count = 0
        self.already_indexed_count = 0
        self.skipped_files_count = 0

        for index, file in enumerate(list_of_egnyte_files):
            if corpus_directory_path not in file:
                list_of_egnyte_files[index] = corpus_directory_path + file

        relative_file_path = Egnyte_File_Operations.get_files_recursively(
            self, corpus_directory_path, list_of_egnyte_files)

        self.file_parsing_details['count_of_files'] = count_of_files
        self.file_parsing_details[
            'downloaded_files_count'] = self.downloaded_files_count
        self.file_parsing_details[
            'already_indexed_count'] = self.already_indexed_count
        self.file_parsing_details[
            'skipped_files_count'] = self.skipped_files_count

        return relative_file_path, self.file_parsing_details
Exemplo n.º 8
0
    def parse(path_to_file, file_relative_path):
        """Return data and meta-data of a ppt file in JSON format
                Args:
                    path_to_file (str): path of file
                Return:
                    data and meta-data of a given file in JSON format
            """
        file_data = None
        try:
            config = utils.config_parser()
            file_path_separator = config.get('egnyte', 'file_path_separator')

            ppt = Presentation(path_to_file)
            date_format = "%Y-%m-%d %H:%M:%S"
            file_data = ppt_parser.parse_metadata(ppt, path_to_file,
                                                  file_relative_path)
            doc_id = utils.generate_doc_id(file_data['source_path'],
                                           file_path_separator)
            thumbnail_image_name = doc_id
            larger_thumbnail_list, smaller_thumbnail_list = thumbnail_generator.generate_thumbnail_image(
                path_to_file, thumbnail_image_name)
            if larger_thumbnail_list == [] or smaller_thumbnail_list == []:
                return None
            file_data['slides'] = ppt_parser.parse_content(
                ppt, larger_thumbnail_list, smaller_thumbnail_list, doc_id)
            file_data['title'] = ppt_parser.extract_document_level_title(
                file_data['slides'], file_data['file_name'])
        except Exception as e:
            logger.error("Failed to open file %s due to error %s" %
                         (path_to_file, str(e)))
            return None

        return file_data
class authorization():

    config = utils.config_parser()
    token_url = config.get('OAuth', 'token_url')
    callback_uri = config.get('OAuth', 'callback_uri')
    client_id = config.get('OAuth', 'client_id')
    authorize_url = config.get('OAuth', 'authorize_url')
    resource = config.get('OAuth', 'resource')

    def getAuthURL(self):
        authorization_redirect_url = self.authorize_url + '?response_type=code&client_id=' + self.client_id + \
                                     '&redirect_uri=' + self.callback_uri + '&resource='+self.resource
        return authorization_redirect_url

    def getAccessToken(self, authorization_code):
        data = {'grant_type': 'authorization_code', 'code': authorization_code, 'redirect_uri': self.callback_uri,
                'client_id': self.client_id}
        access_token_response = requests.post(self.token_url, data=data, verify=False, allow_redirects=False)

        tokens = json.loads(access_token_response.text)
        access_token = tokens['access_token']
        return access_token

    def decode_jwt(self, access_token):
        decoded_token = jwt.decode(access_token, verify=0, algorithm='RS256')
        return decoded_token
    def get_access_token_from_egnyte():
        """ Get access token from egnyte
            Return:
                 access_token on successful connection
        """
        config = utils.config_parser()

        payload = {
            'grant_type': 'password',
            'client_id': config.get('egnyte', 'api_key'),
            'username': config.get('egnyte', 'username'),
            'password': config.get('egnyte', 'password')
        }
        session = requests.session()
        # post call to connect to egnyte. This will return access token for active session
        access_token_endpoint = config.get('egnyte', 'access_token_endpoint')
        token = session.post(access_token_endpoint, data=payload)
        if token.status_code == 200:
            access_token = (
                token.text.split(':'))[1].split(',')[0].split('"')[1]
            return access_token
        else:
            logger.exception(
                "Exception getting access token from egnyte due to %s" %
                token.text)
    def get_event_id_from_index(self):
        config = utils.config_parser()
        latest_event_index = config.get('elasticsearch', 'app_data_index')
        es_obj = elasticsearch_connector.get_instance()
        search_query = {"query": {"match": {"_id": "cursor_id"}}}

        if es_obj.check_if_index_exists(index_name=latest_event_index):
            json_data = es_obj.generic_search_query(latest_event_index,
                                                    search_query)
            hits = json_data['hits']['hits']

            if not hits:
                es_obj.insert_document(latest_event_index, 'pptx', 'cursor_id',
                                       {'cursor_event_id': 0})
                logger.info("App Data Index Created Successfully")
                return False
            else:
                for hit in hits:
                    hit_source = hit.get('_source')
                    if 'cursor_event_id' in hit_source:
                        latest_event_id = hit_source.get('cursor_event_id')
                        return latest_event_id
        else:
            es_obj.insert_document(latest_event_index, 'pptx', 'cursor_id',
                                   {'cursor_event_id': 0})
            logger.info("App Data Index Created Successfully")
            return False
    def query_db(self, query):
        try:
            config = utils.config_parser()

            key_search_rank = config.get("redis", "key_search_history_rank")
            redis_connect = self.redis_client
            if redis_connect is not None and redis_connect.ping():
                self.connect()

            keywords_rank = redis_connect.zrange(key_search_rank, 0, -1)

            words_in_query = query.split()
            for index, word in enumerate(words_in_query):
                word1 = '\\b' + word
                words_in_query[index] = word1
            new_query = '\\s+'.join(words_in_query)

            suggestions = list(
                utils.clean_text(str(selected_keyword))
                for selected_keyword in keywords_rank if re.search(
                    new_query, utils.clean_text(str(selected_keyword))))

            return suggestions
        except:
            logger.exception("Could not query redis DB")
            return None
 def download_trigger_based_corpus_documents(egnyte_uploaded_files):
     config = utils.config_parser()
     destination_local_path = config.get('generic', 'corpus_download_path')
     egnyte = Egnyte_File_Operations.get_instance()
     file_relative_path, file_parsing_details = egnyte.download_files_based_on_trigger(
         egnyte_uploaded_files)
     return file_relative_path, file_parsing_details
Exemplo n.º 14
0
    def get_feedback_count_per_user_for_all_documents(user_id):
        config = utils.config_parser()
        user_feedback_index = config.get('elasticsearch', 'user_feedback_index_name')
        elastic_obj = elasticsearch_connector.get_instance()
        user_like_dislike = {}
        aggregation_query = {
                            "query": {
                                        "match": {
                                            "userId": {
                                                "query": user_id
                                            }
                                        }
                                    },
                            "aggs": {
                                "user_feedback_aggregation": {
                                    "terms": {
                                        "field": "doc_id.keyword",
                                        "size": 10000
                                    },
                                    "aggs": {
                                        "group_by_feedback": {
                                            "terms": {
                                                "field": "feedback"
                                            }
                                        }
                                    }
                                }
                            }
                        }

        try:
            result = elastic_obj.generic_search_query(user_feedback_index, aggregation_query)
            if result:
                aggregations = result["aggregations"]
                buckets = aggregations["user_feedback_aggregation"]["buckets"]
                if buckets:
                    for bucket in buckets:
                        doc_id, liked_status, disliked_status = 0, False, False
                        liked_count, disliked_count = 0, 0
                        doc_id = bucket['key']

                        inner_bucket = bucket['group_by_feedback']['buckets']
                        for feedback in inner_bucket:
                            if feedback['key'] == 1:
                                liked_count = feedback['doc_count']
                            elif feedback['key'] == -1:
                                disliked_count = feedback['doc_count']
                        if int(liked_count) > int(disliked_count) :
                            liked_status = True
                        elif int(liked_count) < int(disliked_count):
                            disliked_status = True

                        user_like_dislike[doc_id] = [liked_status, disliked_status]
                    return user_like_dislike
                else:
                    return False
            else:
                return False
        except:
            return False
Exemplo n.º 15
0
    def get_feedback_count_for_document(doc_id):
        config = utils.config_parser()
        user_feedback_index = config.get('elasticsearch', 'user_feedback_index_name')
        elastic_obj = elasticsearch_connector.get_instance()
        aggregation_query = {
                              "query":
                                {
                                "match_phrase":
                                    {
                                    "doc_id":
                                        {
                                        "query": doc_id
                                        }
                                    }
                                },

                              "aggs": {
                                "user_feedback_aggregation":
                                {
                                    "terms":
                                        {
                                        "field": "doc_id.keyword",
                                        "size": 10000
                                        },
                                    "aggs":
                                    {
                                        "group_by_feedback":
                                        {
                                        "terms":
                                            {
                                             "field":"feedback"
                                            }
                                        }
                                    }
                                }
                              }
                            }

        try:
            result = elastic_obj.generic_search_query(user_feedback_index, aggregation_query)
            if result:
                aggregations = result["aggregations"]
                buckets = aggregations["user_feedback_aggregation"]["buckets"]
                if buckets:
                    feedback_count, num_likes, num_dislikes = 0, 0, 0
                    inner_bucket = buckets[0]['group_by_feedback']['buckets']
                    for feedback in inner_bucket:
                        feedback_count += feedback['key'] * feedback['doc_count']
                        if feedback['key'] == 1:
                            num_likes = feedback['doc_count']
                        elif feedback['key'] == -1:
                            num_dislikes = feedback['doc_count']
                    return feedback_count, num_likes, num_dislikes
                else:
                    return 0, 0, 0
            else:
                return 0, 0, 0
        except:
            return 0, 0, 0
Exemplo n.º 16
0
 def __init__(self, user, password):
     threading.Thread.__init__(self)
     self._mines = {}
     self._wormholes = {}
     self._user = user
     self._pass = password
     self._stop_event = threading.Event()
     self._config = utils.config_parser(utils.get_config(user, password))
Exemplo n.º 17
0
def logout():
    config = utils.config_parser()
    signout_url = config.get('OAuth', 'signout_url')
    session.clear()
    response = redirect(signout_url)
    response.delete_cookie("user_name")
    response.delete_cookie("email")
    return response
 def log_file_download_event(log_data):
     config = utils.config_parser()
     file_download_index = config.get('elasticsearch',
                                      'download_logs_index_name')
     elastic_obj = elasticsearch_connector.get_instance()
     result = elastic_obj.insert_document(file_download_index, "pptx", None,
                                          log_data)
     return result
Exemplo n.º 19
0
 def log_autosuggest_feedback_event(log_data):
     config = utils.config_parser()
     autosuggest_feedback_index = config.get(
         'elasticsearch', 'autosuggest_feedback_index_name')
     elastic_obj = elasticsearch_connector.get_instance()
     result = elastic_obj.insert_document(autosuggest_feedback_index,
                                          "pptx", None, log_data)
     return result
Exemplo n.º 20
0
    def log_subjective_feedback(payload_data):

        config = utils.config_parser()
        subjective_feedback_index = config.get('elasticsearch',
                                               'subjective_feedback_index')
        elastic_obj = elasticsearch_connector.get_instance()
        response = elastic_obj.insert_document(subjective_feedback_index,
                                               "pptx", None, payload_data)
        return response
Exemplo n.º 21
0
    def update_ratings_for_all_docs():
        config = utils.config_parser()
        user_feedback_index = config.get('elasticsearch', 'user_feedback_index_name')
        corpus_index_name = config.get('elasticsearch', 'corpus_index_name')
        doc_type = config.get('elasticsearch', 'doc_type')

        elastic_obj = elasticsearch_connector.get_instance()
        aggregation_query = {
                            "aggs": {
                                "user_feedback_aggregation": {
                                    "terms": {
                                        "field": "doc_id.keyword",
                                        "size": 10000
                                    },
                                    "aggs": {
                                        "group_by_feedback":{
                                            "terms": {
                                                 "field": "feedback"
                                            }
                                        }
                                    }
                                }
                            }
                        }

        result = elastic_obj.generic_search_query(user_feedback_index, aggregation_query)
        aggregations = result["aggregations"]
        buckets = aggregations["user_feedback_aggregation"]["buckets"]
        for item in buckets:
            key = item['key']
            feedback_count, num_likes, num_dislikes = 0, 0, 0
            inner_bucket = item['group_by_feedback']['buckets']
            for feedback in inner_bucket:
                feedback_count += feedback['key'] * feedback['doc_count']
                if feedback['key'] == 1:
                    num_likes = feedback['doc_count']
                elif feedback['key'] == -1:
                    num_dislikes = feedback['doc_count']

            ratings = {
                "script" : {
                    "source": "ctx._source.ratings = params.ratings; ctx._source.num_likes = params.num_likes; ctx._source.num_dislikes = params.num_dislikes",
                    "lang": "painless",
                    "params": {
                        "ratings": feedback_count,
                        "num_likes": num_likes,
                        "num_dislikes": num_dislikes
                    }
                }
            }

            result = elastic_obj.update_document(corpus_index_name, doc_type, key, ratings)
            if result:
                logger.info("Aggregated ratings updated on corpus index")
            else:
                logger.error("Could not aggregate ratings on corpus index")
def main():
    # access_token = connect_and_get_access_token()
    # print(access_token)
    egnyte_connect = egnyte_connector()
    eg_config = utils.config_parser()
    access_token = eg_config.get('egnyte', 'access_token')
    # Connect to egnyte using domain and access token
    client = egnyte.EgnyteClient({
        "domain": "xoriant.egnyte.com",
        "access_token": access_token
    })
    def backup(backup_thumbnail="True"):
        try:
            date = str(datetime.today().date())
            config = utils.config_parser()
            host = config.get('elasticsearch', 'host')
            port = config.get('elasticsearch', 'port')
            es_dump_auth = config.get('elasticsearch', 'es_dump_auth')
            index_list = config.get('elasticsearch', 'backup_indices')
            gcs_bucket_name = config.get('elasticsearch', 'gcs_bucket_name')
            backup_to_gcs = config.get('elasticsearch', 'backup_to_gcs')
            thumbnail_path = config.get('generic', 'thumbnail_path')
            input_ip = 'https://' + host + ":" + port
            output_path = "./esbackup_" + date
            if not os.path.exists(output_path):
                os.mkdir(output_path)
            else:
                output_path = output_path + datetime.now().strftime(
                    "_%H-%M-%S")
                os.mkdir(output_path)

            if backup_thumbnail == "True":
                thumbnail_output_path = output_path + '/thumbnail'
                if os.path.isdir(thumbnail_output_path):
                    shutil.rmtree(thumbnail_output_path)
                logger.info("Creating backup of thumbnails...")
                try:
                    shutil.copytree(thumbnail_path, thumbnail_output_path)
                except OSError as e:
                    # If the error was caused because the source wasn't a directory
                    if e.errno == errno.ENOTDIR:
                        shutil.copy(thumbnail_path, output_path)
                    else:
                        logger.exception('Directory not copied. Error: %s' % e)

                if os.path.exists(thumbnail_output_path):
                    shutil.make_archive(thumbnail_output_path, 'zip',
                                        thumbnail_output_path)

                if os.path.exists(thumbnail_output_path):
                    shutil.rmtree(thumbnail_output_path)
            else:
                logger.info("Thumbnails backup is not created.")

            for index in index_list.split(','):
                logger.info("Creating es_backup for index %s" % index)
                command = "NODE_TLS_REJECT_UNAUTHORIZED=0 elasticdump --input=" + input_ip + "/" + index + " --headers '{\"Authorization\":\"Basic " + es_dump_auth + "\"}'" + " --output=" + output_path + "/" + index + ".json --type=data"
                os.system(command)

            if backup_to_gcs == 'true':
                os.system("gsutil cp -r " + output_path + " gs://" +
                          gcs_bucket_name)

        except Exception as e:
            logger.exception("Elasticsearch es_backup failed")
    def index_specific_on_schedule():
        config = utils.config_parser()
        job_enable = config.get("scheduler", "enable").lower()

        if job_enable == "true":
            try:
                logger.info("Starting the cron job")
                res = corpus_indexer.index_based_on_event()
                logger.info("Index Based on Event Cron job Done")
            except Exception as e:
                logger.exception("Index for specific file using schedule Exception Occurred.")
        else:
            logger.info("Scheduler job disabled")
 def update_download_count_for_document(doc_id, update_query):
     config = utils.config_parser()
     corpus_index_name = config.get('elasticsearch', 'corpus_index_name')
     doc_type = config.get('elasticsearch', 'doc_type')
     es_obj = elasticsearch_connector.get_instance()
     try:
         es_obj.update_document(corpus_index_name, doc_type, doc_id,
                                update_query)
         return True
     except:
         logger.exception("Updating download count is failed for %s " %
                          (doc_id))
         return False
Exemplo n.º 26
0
def get_recently_added_documents(is_authenticated, is_authorized):
    # This endpoint will get recently added documents from corpus index based on indexing_time parameter
    if not is_authorized:
        return render_template("unauthorized_user.html"), 401

    config = utils.config_parser()
    corpus_index = config.get('elasticsearch', 'corpus_index_name')
    es_obj = elasticsearch_connector.get_instance()
    recent_documents_name_id = []
    recently_added_documents = {
        "_source": ["source_path", "file_name", "title", "indexing_time"],
        "query": {
            "match_all": {}
        },
        "sort": [{
            "indexing_time": {
                "order": "desc"
            }
        }]
    }

    response = es_obj.generic_search_query(corpus_index,
                                           recently_added_documents,
                                           size=10)

    if response:
        for hits in response['hits']['hits']:
            recent_data = {}
            hits_source = hits.get('_source')
            recent_data['doc_id'] = hits.get('_id')
            recent_data['source_path'] = hits_source.get('source_path')
            recent_data['file_name'] = hits_source.get('file_name')
            title = re.sub(r'^\b(Xoriant )',
                           '',
                           hits_source.get('title'),
                           flags=re.IGNORECASE).strip()
            recent_data['title'] = title
            recent_data['indexing_time'] = hits_source.get('indexing_time')
            recent_documents_name_id.append(recent_data)

    if recent_documents_name_id:
        return Response(json.dumps(recent_documents_name_id),
                        status=200,
                        mimetype='application/json')
    else:
        return Response(json.dumps(
            {'failure': 'Error in getting recently added docuemnts'}),
                        status=400,
                        mimetype='application/json')
 def connect(self):
     redis_connect = self.redis_client
     if redis_connect is not None and redis_connect.ping():
         logger.info('Already connected to redis DB')
     else:
         config = utils.config_parser()
         redis_host = config.get("redis", "host")
         redis_password = config.get("redis", "password")
         redis_port = config.get("redis", "port")
         r_obj = redis.Redis(host=redis_host,
                             port=redis_port,
                             db=0,
                             password=redis_password)
         logger.info("Successfully connected to Redis DB")
         self.redis_client = r_obj
 def store_event_id_in_index(self, latest_parsed_event_id):
     config = utils.config_parser()
     latest_event_index = config.get('elasticsearch', 'app_data_index')
     es_obj = elasticsearch_connector.get_instance()
     update_event_id = {
         "script": {
             "source":
             "ctx._source.cursor_event_id = params.cursor_event_id",
             "params": {
                 "cursor_event_id": latest_parsed_event_id
             }
         }
     }
     es_obj.update_document(latest_event_index, 'pptx', 'cursor_id',
                            update_event_id)
Exemplo n.º 29
0
 def reset_ratings_likes_dislikes_for_all_indexed_docs():
     config = utils.config_parser()
     index_name = config.get("elasticsearch", "corpus_index_name")
     doc_type = config.get("elasticsearch", "doc_type")
     reset_query={
                   "script": {
                     "source": "ctx._source.ratings = 0; ctx._source.num_likes = 0; ctx._source.num_dislikes = 0",
                     "lang": "painless"
                   },
                   "query": {
                     "match_all": {}
                   }
                  }
     es_obj = elasticsearch_connector.get_instance()
     return es_obj.update_index_by_query(index_name, doc_type, reset_query)
Exemplo n.º 30
0
def get_topics(is_authenticated, is_authorized):
    # This endpoint will return trending top 10 topics
    if not is_authorized:
        return render_template("unauthorized_user.html"), 401

    config = utils.config_parser()
    topic_list = config.get('trending_topics', 'topic_list').split(",")

    if topic_list:
        return Response(json.dumps({'topics': topic_list}),
                        status=200,
                        mimetype='application/json')
    else:
        return Response(json.dumps({'failure': 'No topics found'}),
                        status=204,
                        mimetype='application/json')