Exemplo n.º 1
0
def create_dataset_testfile(dir_path, out_path):
    subdir_list = os.listdir(dir_path)
    sampler = TestSampler()
    plt.ion()
    plt.figure(1)
    for name in subdir_list:
        print('start process {}:'.format(name))
        cnt = 0
        fp = open(os.path.join(out_path, str(name) + '.pkl'), 'wb')
        img_namelist = os.listdir(os.path.join(dir_path, name))
        img_namelist = np.sort(img_namelist)
        for img in img_namelist:
            img_path = os.path.join(dir_path, name, img)
            img_data = cv2.imread(img_path, cv2.IMREAD_COLOR)
            img_data = cv2.resize(img_data, (640, 480))
            #img_data=np.copy(img_data[:,:,::-1])

            # print(img_data.shape)
            # print(img_data)
            sample_list, scaled = sampler.sample_and_filter(img_data)
            plt.imshow(scaled[:,:,::-1])
            plt.draw()
            plt.show()
            obj = {'origin': utils.encode_img(img_data), 'scaled': utils.encode_img(scaled)}
            pickle.dump(obj, fp, -1)
            for sample in sample_list:
                pickle.dump(sample, fp, -1)
            cnt = cnt + 1
            print(cnt)
        fp.close()
Exemplo n.º 2
0
 def sampling_process(self,data,scaled,shape):
     """
     采用随机性策略抽取样本,缺少样本数量的确定性,但是可以很大程度加快处理速度,视情况采用
     :param 输入的原始图像矩阵,要求格式为(H,W,C)通道最好为RGB
     :param scaled: 缩放(4倍)后的图像矩阵
     :return: 抽样得到的样本列表
     """
     sample_list = []
     #if self.cache0 is None or self.cache1 is None:
         #return sample_list
     dx=dy=20
     self.cache.append((data,scaled,shape))
     for i in range(shape[0]//dy):
         for j in range(shape[1]//dx):
             #lr = scaled[i * dx:(i + 1) * dx, j * dy:(j + 1) * dy, :]
             if np.random.rand()<self.sample_rate:#*self.get_weight(lr):
                 LQs = []
                 GT = []
                 #self.logger.info('cache len is {}'.format(len(self.cache)))
                 for index in range(len(self.cache)):
                     GT.append(self.cache[index][0][i * dx * 4:(i + 1) * dx * 4, j * dy * 4:(j + 1) * dy * 4, :])
                     if index%2==0:
                         LQs.append(self.cache[index][1][i * dx:(i + 1) * dx, j * dy:(j + 1) * dy, :])
                 sample = {'LQs': [utils.encode_img(lr) for lr in LQs], 'GT': [utils.encode_img(hr) for hr in GT]
                     ,'sample':True}
                 sample_list.append(sample)
     self.cache.clear()
     self.cache.append((data,scaled,shape))
     #chean sample cache
     return sample_list
Exemplo n.º 3
0
    def create_PSNR_testfile(self,file_path):
        """
        这部分或许可以直接在服务端验证
        :param file_path:
        :return:
        """
        f_path=Path(file_path)
        if not f_path.parent.exists():
            f_path.parent.mkdir(parents=True)
        sampler=TestSampler()
        fp=open(file_path,'wb')
        with picamera.PiCamera() as camera:
            rawFrame = PiRGBArray(camera, (640, 480))
            camera.resolution = (640, 480)
            camera.framerate = 20
            shape=(640,480)
            time.sleep(2)
            self.start = time.time()
            cnt=0
            start=time.time()
            for frame in camera.capture_continuous(rawFrame, 'rgb', use_video_port=True):
                origin = np.array(frame.array, dtype=np.uint8)
                sample_list, scaled = sampler.sample_and_filter(origin)

                h_n = int(80 * np.ceil(origin.shape[0] / 80))
                w_n = int(80 * np.ceil(origin.shape[1] / 80))
                normed = np.zeros((h_n, w_n, 3), dtype=np.float32) / 255.
                normed[0:origin.shape[0], 0:origin.shape[1], :] = origin

                obj = {'origin': utils.encode_img(normed), 'scaled': utils.encode_img(scaled),'shape':shape}
                pickle.dump(obj, fp, -1)
                for sample in sample_list:
                    pickle.dump(sample,fp,-1)
                cnt = cnt + 1
                if cnt%10:
                    self.logger.info("sent {} frames in {} sec,fps:{}".format(cnt, time.time() - start,
                                                                                 cnt / (time.time() - start)))
                if cnt>200:
                    break
                self.logger.info(cnt)
                self.count = self.count + 1
                rawFrame.seek(0)
                rawFrame.truncate()
                if self.terminate:
                    self.logger.info('terminate')
                    break
        fp.close()
Exemplo n.º 4
0
    def create_datafile(self,file_path):
        """
        create the original captured frames,encoded in png
        :param file_path: the path of the data pkl file
        """
        f_path=Path(file_path)
        if not f_path.parent.exists():
            f_path.parent.mkdir(parents=True)
        sampler=TestSampler(sample_len=7)
        fp=open(file_path,'wb')
        with picamera.PiCamera() as camera:
            rawFrame = PiRGBArray(camera, (640, 480))
            camera.resolution = (640, 480)
            camera.framerate = 15
            shape=(640,480)
            time.sleep(2)
            self.start = time.time()
            cnt=0
            start=time.time()
            prev_cnt=0
            len_sum=0
            for frame in camera.capture_continuous(rawFrame, 'rgb', use_video_port=True):
                frame = np.array(frame.array, dtype=np.uint8)
                #frame = cv2.resize(frame, dsize=(0, 0), fx=0.25, fy=0.25, interpolation=cv2.INTER_AREA)
                # frame=utils.imresize_np(frame,1/4,True)
                pickle.dump(utils.encode_img(frame), fp, -1)

                # sample_list, scaled = sampler.sample_and_filter(np.array(frame.array, dtype=np.uint8))
                # #self.logger.info('len of sample list is {}'.format(len(sample_list)))
                # len_sum=len_sum+len(sample_list)
                # obj={'img':utils.encode_img(scaled),'shape':shape,'sample':False}
                # pickle.dump(obj,fp,-1)
                #
                # for sample in sample_list:
                #     pickle.dump(sample,fp,-1)
                #     # self.logger.info('send sample')

                cnt = cnt + 1
                self.count = self.count + 1
                if cnt%10==0:
                    self.logger.info('total sample num is:{}'.format(len_sum))
                    self.logger.info("sent {} frames in {} sec,fps:{}".format(cnt, time.time() - start,
                                                                                 cnt / (time.time() - start)))
                    start=time.time()
                    cnt=0
                    len_sum=0
                if self.count>200:
                    break
                #self.logger.info(cnt)
                rawFrame.seek(0)
                rawFrame.truncate()
                if self.terminate:
                    self.logger.info('terminate')
                    break
        fp.close()
Exemplo n.º 5
0
    def create_dataset_testfile(self,dir_path,out_path):
        subdir_list=os.listdir(dir_path)
        sampler=TestSampler()
        plt.ion()
        plt.figure(1)
        for name in subdir_list:
            self.logger.info('start process {}:'.format(name))
            cnt=0
            fp=open(os.path.join(out_path,str(name)+'.pkl'),'wb')
            img_namelist=os.listdir(os.path.join(dir_path,name))
            img_namelist= np.sort(img_namelist)
            for img in img_namelist:
                img_path=os.path.join(dir_path,name,img)
                img_data=cv2.imread(img_path,cv2.IMREAD_COLOR)
                shape=(img_data.shape[1],img_data.shape[0])
                #img_data=cv2.resize(img_data,(640,480))

                h_n = int(80 * np.ceil(img_data.shape[0] / 80))
                w_n = int(80 * np.ceil(img_data.shape[1] / 80))
                normed = np.zeros((h_n, w_n, 3), dtype=np.float32) / 255.
                normed[0:img_data.shape[0], 0:img_data.shape[1], :] = img_data

                plt.imshow(img_data)
                plt.draw()
                plt.show()
                #print(img_data.shape)
                #print(img_data)
                sample_list, scaled = sampler.sample_and_filter(img_data)
                obj = {'origin': utils.encode_img(img_data), 'scaled': utils.encode_img(scaled),'shape':shape}
                pickle.dump(obj, fp, -1)
                for sample in sample_list:
                    pickle.dump(sample, fp, -1)
                cnt = cnt + 1
                self.logger.info(cnt)
                self.count = self.count + 1
            fp.close()
Exemplo n.º 6
0
def root():

    print('the request:', request)
    x = request.get_json()
    img = x['input']

    img = decode_img(img)

    predictions = model(img)

    img = visualise_keypoints(img, predictions)

    img = encode_img(img)

    return json.dumps({
        'statusCode': 200,
        'response': img,
        'headers': {
            'Access-Control-Allow-Origin': '*'
        }
    })
Exemplo n.º 7
0
def sample_thread(sock, capture_pool):
    sampler = TestSampler()
    logger = logging.getLogger('base')
    cnt = 0
    while cnt < 20:
        with capture_pool.pool_lock:
            if capture_pool.pool:
                img = capture_pool.pool.pop()
                sample_list, scaled = sampler.sample_and_filter(img)
                obj = {
                    'img': utils.encode_img(scaled),
                    'shape': img.shape,
                    'sample': False
                }
                network.send_obj(sock, obj)
                for sample in sample_list:
                    network.send_obj(sock, sample)
                cnt = cnt + 1
                logger.info(cnt)
            else:
                time.sleep(0.02)
Exemplo n.º 8
0
def start_client_with_file(ip_addr, port, file_path):
    """
    利用pkl文件来模拟服务端的数据采集
    :param ip_addr: 服务端的ip地址
    :param port: 服务器端口
    :param file_path: 待使用的pkl文件位置
    """
    logger = logging.getLogger('base')
    logger.info('start_client')
    fp = open(file_path, 'rb')
    conn = connection(ip_addr, port)
    conn.start_connection()
    cnt = 0
    sampler = dataprocess.Sampler.TestSampler()
    start = time.time()
    while True:
        try:
            data = pickle.load(fp)
            data = utils.decode_jpeg(data)
            sample_list, scaled = sampler.sample_and_filter(data)
            obj = {
                'img': utils.encode_img(scaled),
                'shape': data.shape,
                'sample': False
            }
            network.send_obj(conn.socket, obj)
            for sample in sample_list:
                network.send_obj(conn.socket, sample)
            # TODO:考虑还有没有优化的策略
            cnt = cnt + 1
            if cnt % 10 == 0:
                curr_time = time.time()
                logger.info("sent {} frames in {} sec,fps:{}".format(
                    cnt, curr_time - start, cnt / (curr_time - start)))
        except EOFError:
            break
    conn.stop_connection()
    fp.close()
Exemplo n.º 9
0
def write_predict(raw_image, graph, fps):
    with tf.Session(graph=graph) as sess:
        # Encode test image
        raw_img, test_input = encode_img(raw_image, MODEL_SIZE)
        print('test_input shape', test_input.shape)
        # Run tf model
        pred = sess.run(y, feed_dict={x: test_input})
        # Handle model output
        boxes, scores, classes, nums = output_boxes( \
         pred, MODEL_SIZE,
         max_output_size=MAX_OUTPUT_SIZE,
         max_output_size_per_class=MAX_OUTPUT_SIZE_PER_CLASS,
         iou_threshold=IOU_THRESHOLD,
         confidence_threshold=CONFIDENCE_THRESHOLD)
        img = draw_outputs(raw_img, boxes, scores, classes, nums, class_names)
        # Add fps value
        words_color = (0, 0, 255)  #BGR
        if fps is not None:
            cv2.putText(img, "FPS: {:.2f}".format(fps), (20, 40),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, words_color, 1)
        # Write final result
        cv2.imwrite('result.jpg', img)
        print('scores', scores.eval())
Exemplo n.º 10
0
 def start_capture_no_bolck(self,sock):
     self.srhandler=SRHandler(sock,self.sampler)
     self.srhandler.setDaemon(True)
     self.srhandler.start()#开启接收线程
     with picamera.PiCamera() as camera:
         rawFrame = PiRGBArray(camera, (640, 480))
         camera.resolution = (640, 480)
         camera.framerate = 15 #目前能够到达17fps左右的采集速度,推测此前瓶颈在于网络传输
         shape=(640,480)
         time.sleep(2)
         self.start = time.time()
         cnt=0
         start=self.start
         for frame in camera.capture_continuous(rawFrame, 'rgb', use_video_port=True):
             frame=np.array(frame.array, dtype=np.uint8)
             sample_list, scaled = self.sampler.sample_and_filter(frame)
             obj={'img':utils.encode_img(scaled),'shape':shape,'sample':False}
             network.send_obj(sock,obj)
             for sample in sample_list:
                 network.send_obj(sock, sample)
             #TODO:考虑还有没有优化的策略
             cnt = cnt + 1
             if cnt%10==0:
                 curr_time=time.time()
                 self.logger.info("sent {} frames in {} sec,fps:{}".format(cnt, curr_time - start,
                                                                              cnt / (curr_time - start)))
             if cnt>200:
                 self.logger.info('process end')
                 break
             #self.logger.info(cnt)
             self.count = self.count + 1
             rawFrame.seek(0)
             rawFrame.truncate()
             if self.terminate:
                 self.logger.info('terminate')
                 break
Exemplo n.º 11
0
import requests
from PIL import Image
import json
from io import BytesIO 
import base64
from utils import encode_img, decode_img
from time import time

host = '18.133.254.35'
host = 'localhost'

img = Image.open('Images/walking.jpg')
img = encode_img(img)

s = {
    'input': img
}

r = requests.post(f'http://{host}:5000/', data=json.dumps(s), headers={'content-type': 'application/json'})

print(r)
print(r.json())
r = r.json()
img = decode_img(r['response'])
img.show()
Exemplo n.º 12
0
def get_id(image):
    return encode_img("db/" + image + ".jpg")
Exemplo n.º 13
0
 def __make_base64_encoded_string(self, img_path):
     encoded_img = utils.encode_img(img_path)
     return utils.process_base64(encoded_img)