Exemplo n.º 1
0
def test_type2(shape=(16, 16, 16), M=4096, tol=1e-3):
    kxyz = utils.gen_nu_pts(M)
    fk = utils.gen_uniform_data(shape)

    kxyz_gpu = gpuarray.to_gpu(kxyz)
    fk_gpu = gpuarray.to_gpu(fk)

    c_gpu = gpuarray.GPUArray(shape=(M,), dtype=np.complex64)

    plan = cufinufft.plan(2, shape, -1, tol)

    cufinufft.set_nu_pts(plan, M, kxyz_gpu[0].gpudata, kxyz_gpu[1].gpudata,
            kxyz_gpu[2].gpudata)

    cufinufft.execute(plan, c_gpu.gpudata, fk_gpu.gpudata)

    cufinufft.destroy(plan)

    c = c_gpu.get()

    ind = M // 2

    c_est = c[ind]
    c_target = utils.direct_type2(fk, kxyz[:, ind])

    type2_rel_err = np.abs(c_target - c_est) / np.abs(c_target)

    print('Type 2 relative error:', type2_rel_err)
Exemplo n.º 2
0
def test_opts(shape=(8, 8, 8), M=32, tol=1e-3):
    dtype = np.float32

    complex_dtype = utils._complex_dtype(dtype)

    dim = len(shape)

    k = utils.gen_nu_pts(M, dim=dim).astype(dtype)
    c = utils.gen_nonuniform_data(M).astype(complex_dtype)

    k_gpu = gpuarray.to_gpu(k)
    c_gpu = gpuarray.to_gpu(c)
    fk_gpu = gpuarray.GPUArray(shape, dtype=complex_dtype)

    plan = cufinufft(1,
                     shape,
                     eps=tol,
                     dtype=dtype,
                     gpu_sort=False,
                     gpu_maxsubprobsize=10)

    plan.set_pts(k_gpu[0], k_gpu[1], k_gpu[2])

    plan.execute(c_gpu, fk_gpu)

    fk = fk_gpu.get()

    ind = int(0.1789 * np.prod(shape))

    fk_est = fk.ravel()[ind]
    fk_target = utils.direct_type1(c, k, shape, ind)

    type1_rel_err = np.abs(fk_target - fk_est) / np.abs(fk_target)

    assert type1_rel_err < 0.01
Exemplo n.º 3
0
def test_type1(shape=(16, 16, 16), M=4096, tol=1e-3):
    kxyz = utils.gen_nu_pts(M)
    c = utils.gen_nonuniform_data(M)

    kxyz_gpu = gpuarray.to_gpu(kxyz)
    c_gpu = gpuarray.to_gpu(c)
    fk_gpu = gpuarray.GPUArray(shape, dtype=np.complex64)

    plan = cufinufft.plan(1, shape, 1, tol)

    cufinufft.set_nu_pts(plan, M, kxyz_gpu[0].gpudata, kxyz_gpu[1].gpudata,
            kxyz_gpu[2].gpudata)

    cufinufft.execute(plan, c_gpu.gpudata, fk_gpu.gpudata)

    fk = fk_gpu.get()

    ind = int(0.1789 * np.prod(shape))

    fk_est = fk.ravel()[ind]
    fk_target = utils.direct_type1(c, kxyz, shape, ind)

    type1_rel_err = np.abs(fk_target - fk_est) / np.abs(fk_target)

    print('Type 1 relative error:', type1_rel_err)
Exemplo n.º 4
0
def _test_type2(dtype, shape=(16, 16, 16), M=4096, tol=1e-3):
    complex_dtype = utils._complex_dtype(dtype)

    k = utils.gen_nu_pts(M).astype(dtype)
    fk = utils.gen_uniform_data(shape).astype(complex_dtype)

    k_gpu = gpuarray.to_gpu(k)
    fk_gpu = gpuarray.to_gpu(fk)

    c_gpu = gpuarray.GPUArray(shape=(M, ), dtype=complex_dtype)

    plan = cufinufft(2, shape, eps=tol, dtype=dtype)

    plan.set_pts(k_gpu[0], k_gpu[1], k_gpu[2])

    plan.execute(c_gpu, fk_gpu)

    c = c_gpu.get()

    ind = M // 2

    c_est = c[ind]
    c_target = utils.direct_type2(fk, k[:, ind])

    type2_rel_err = np.abs(c_target - c_est) / np.abs(c_target)

    print('Type 2 relative error:', type2_rel_err)

    assert type2_rel_err < 0.01
Exemplo n.º 5
0
def _test_type1(dtype, shape=(16, 16, 16), M=4096, tol=1e-3):
    complex_dtype = utils._complex_dtype(dtype)

    dim = len(shape)

    k = utils.gen_nu_pts(M, dim=dim).astype(dtype)
    c = utils.gen_nonuniform_data(M).astype(complex_dtype)

    k_gpu = gpuarray.to_gpu(k)
    c_gpu = gpuarray.to_gpu(c)
    fk_gpu = gpuarray.GPUArray(shape, dtype=complex_dtype)

    plan = cufinufft(1, shape, eps=tol, dtype=dtype)

    plan.set_pts(k_gpu[0], k_gpu[1], k_gpu[2])

    plan.execute(c_gpu, fk_gpu)

    fk = fk_gpu.get()

    ind = int(0.1789 * np.prod(shape))

    fk_est = fk.ravel()[ind]
    fk_target = utils.direct_type1(c, k, shape, ind)

    type1_rel_err = np.abs(fk_target - fk_est) / np.abs(fk_target)

    print('Type 1 relative error:', type1_rel_err)

    assert type1_rel_err < 0.01
Exemplo n.º 6
0
def test_exec_raises_on_dtype():
    dtype = np.float32
    complex_dtype = np.complex64

    M = 4096
    tol = 1e-3
    shape = (16, 16, 16)
    dim = len(shape)

    kxyz = utils.gen_nu_pts(M, dim=dim).astype(dtype)
    c = utils.gen_nonuniform_data(M).astype(complex_dtype)
    c_gpu = gpuarray.to_gpu(c)
    # Using c.real gives us wrong dtype here...
    c_gpu_wrong_dtype = gpuarray.to_gpu(c.real)

    kxyz_gpu = gpuarray.to_gpu(kxyz)
    fk_gpu = gpuarray.GPUArray(shape, dtype=complex_dtype)
    # Here we'll intentionally contruct an incorrect array dtype.
    fk_gpu_wrong_dtype = gpuarray.GPUArray(shape, dtype=np.complex128)

    plan = cufinufft(1, shape, eps=tol, dtype=dtype)

    plan.set_pts(kxyz_gpu[0], kxyz_gpu[1], kxyz_gpu[2])

    with pytest.raises(TypeError):
        plan.execute(c_gpu, fk_gpu_wrong_dtype)

    with pytest.raises(TypeError):
        plan.execute(c_gpu_wrong_dtype, fk_gpu)
Exemplo n.º 7
0
def test_set_nu_raises_on_dtype():
    dtype = np.float32

    M = 4096
    tol = 1e-3
    shape = (16, 16, 16)
    dim = len(shape)

    kxyz = utils.gen_nu_pts(M, dim=dim).astype(dtype)

    kxyz_gpu = gpuarray.to_gpu(kxyz)

    # Here we'll intentionally contruct an incorrect array dtype.
    kxyz_gpu_wrong_type = gpuarray.to_gpu(kxyz.astype(np.float64))

    plan = cufinufft(1, shape, eps=tol, dtype=dtype)

    with pytest.raises(TypeError):
        plan.set_pts(kxyz_gpu_wrong_type[0], kxyz_gpu[1], kxyz_gpu[2])
    with pytest.raises(TypeError):
        plan.set_pts(kxyz_gpu[0], kxyz_gpu_wrong_type[1], kxyz_gpu[2])
    with pytest.raises(TypeError):
        plan.set_pts(kxyz_gpu[0], kxyz_gpu[1], kxyz_gpu_wrong_type[2])
    with pytest.raises(TypeError):
        plan.set_pts(kxyz_gpu_wrong_type[0], kxyz_gpu_wrong_type[1],
                     kxyz_gpu_wrong_type[2])
Exemplo n.º 8
0
def test_multi_type1(dtype=np.float32, shape=(16, 16, 16), M=4096, tol=1e-3):
    complex_dtype = utils._complex_dtype(dtype)

    drv.init()

    dev_count = drv.Device.count()

    if dev_count == 1:
        pytest.skip()

    devs = [drv.Device(dev_id) for dev_id in range(dev_count)]

    dim = len(shape)

    errs = []

    for dev_id, dev in enumerate(devs):
        ctx = dev.make_context()

        k = utils.gen_nu_pts(M, dim=dim).astype(dtype)
        c = utils.gen_nonuniform_data(M).astype(complex_dtype)

        k_gpu = gpuarray.to_gpu(k)
        c_gpu = gpuarray.to_gpu(c)
        fk_gpu = gpuarray.GPUArray(shape, dtype=complex_dtype)

        plan = cufinufft(1, shape, eps=tol, dtype=dtype, gpu_device_id=dev_id)

        plan.set_pts(k_gpu[0], k_gpu[1], k_gpu[2])

        plan.execute(c_gpu, fk_gpu)

        fk = fk_gpu.get()

        ind = int(0.1789 * np.prod(shape))

        fk_est = fk.ravel()[ind]
        fk_target = utils.direct_type1(c, k, shape, ind)

        type1_rel_err = np.abs(fk_target - fk_est) / np.abs(fk_target)

        print(f'Type 1 relative error (GPU {dev_id}):', type1_rel_err)

        ctx.pop()

        errs.append(type1_rel_err)

    assert all(err < 0.01 for err in errs)
Exemplo n.º 9
0
def test_set_pts_raises_on_size():
    dtype = np.float32

    M = 8
    tol = 1e-3
    shape = (16, 16, 16)
    dim = len(shape)

    kxyz = utils.gen_nu_pts(M, dim=dim).astype(dtype)

    kxyz_gpu = gpuarray.to_gpu(kxyz)

    plan = cufinufft(1, shape, eps=tol, dtype=dtype)

    with pytest.raises(TypeError) as err:
        plan.set_pts(kxyz_gpu[0], kxyz_gpu[1][:4])
    assert 'kx and ky must be equal' in err.value.args[0]

    with pytest.raises(TypeError) as err:
        plan.set_pts(kxyz_gpu[0], kxyz_gpu[1], kxyz_gpu[2][:4])
    assert 'kx and kz must be equal' in err.value.args[0]