Exemplo n.º 1
0
def apply_actions_on_image(session_id, action_stack, filename,
                           image_signature):
    action_stack = deepcopy(action_stack)

    # If we have arrived to the original image
    if len(action_stack) == 0:
        return im_pil0

    # Pop out the last action
    last_action = action_stack.pop()

    # Apply all the previous action_stack, and gets the image PIL
    im_pil = apply_actions_on_image(session_id, action_stack, filename,
                                    image_signature)
    im_size = im_pil.size

    # Apply the rest of the action_stack
    operation = last_action['operation']
    selectedData = last_action['selectedData']
    type = last_action['type']

    # Select using Lasso
    if selectedData and 'lassoPoints' in selectedData:
        selection_mode = 'lasso'
        selection_zone = generate_lasso_mask(im_pil, selectedData)
    # Select using rectangular box
    elif selectedData and 'range' in selectedData:
        selection_mode = 'select'
        lower, upper = map(int, selectedData['range']['y'])
        left, right = map(int, selectedData['range']['x'])
        # Adjust height difference
        height = im_size[1]
        upper = height - upper
        lower = height - lower
        selection_zone = (left, upper, right, lower)
    # Select the whole image
    else:
        selection_mode = 'select'
        selection_zone = (0, 0) + im_size

    # Apply the filters
    if type == 'filter':
        apply_filters(image=im_pil,
                      zone=selection_zone,
                      filter=operation,
                      mode=selection_mode)
    elif type == 'enhance':
        enhancement = operation['enhancement']
        factor = operation['enhancement_factor']

        apply_enhancements(image=im_pil,
                           zone=selection_zone,
                           enhancement=enhancement,
                           enhancement_factor=factor,
                           mode=selection_mode)

    return im_pil
def apply_actions_on_image(session_id, action_stack, filename,
                           image_signature):
    action_stack = deepcopy(action_stack)

    # If we have arrived to the original image
    if len(action_stack) == 0 and LOCAL:
        with open("image_string.csv", mode="r") as image_file:
            image_reader = csv.DictReader(image_file)
            for row in image_reader:
                im_pil = drc.b64_to_pil(row["image"])
                return im_pil

    if len(action_stack) == 0 and not LOCAL:
        # Retrieve the url in which the image string is stored inside s3,
        # using the session ID

        url = s3.generate_presigned_url(ClientMethod="get_object",
                                        Params={
                                            "Bucket": bucket_name,
                                            "Key": session_id
                                        })

        # A key replacement is required for URL pre-sign in gcp

        url = url.replace("AWSAccessKeyId", "GoogleAccessId")

        response = requests.get(url)
        if DEBUG:
            print("IMAGE STRING LENGTH: " + str(len(response.text)))
        im_pil = drc.b64_to_pil(response.text)
        return im_pil

    # Pop out the last action
    last_action = action_stack.pop()
    # Apply all the previous action_stack recursively, and gets the image PIL
    im_pil = apply_actions_on_image(session_id, action_stack, filename,
                                    image_signature)
    im_size = im_pil.size

    # Apply the rest of the action_stack
    operation = last_action["operation"]
    selected_data = last_action["selectedData"]
    action_type = last_action["type"]

    # Select using Lasso
    if selected_data and "lassoPoints" in selected_data:
        selection_mode = "lasso"
        selection_zone = utils.generate_lasso_mask(im_pil, selected_data)
    # Select using rectangular box
    elif selected_data and "range" in selected_data:
        selection_mode = "select"
        lower, upper = map(int, selected_data["range"]["y"])
        left, right = map(int, selected_data["range"]["x"])
        # Adjust height difference
        height = im_size[1]
        upper = height - upper
        lower = height - lower
        selection_zone = (left, upper, right, lower)
    # Select the whole image
    else:
        selection_mode = "select"
        selection_zone = (0, 0) + im_size

    # Apply the filters
    if action_type == "filter":
        utils.apply_filters(image=im_pil,
                            zone=selection_zone,
                            filter=operation,
                            mode=selection_mode)
    elif action_type == "enhance":
        enhancement = operation["enhancement"]
        factor = operation["enhancement_factor"]

        utils.apply_enhancements(
            image=im_pil,
            zone=selection_zone,
            enhancement=enhancement,
            enhancement_factor=factor,
            mode=selection_mode,
        )

    return im_pil
Exemplo n.º 3
0
def apply_actions_on_image(session_id,
                           action_stack,
                           filename,
                           image_signature):
    action_stack = deepcopy(action_stack)

    # If we have arrived to the original image
    if len(action_stack) == 0:
        # Retrieve the url in which the image string is stored inside s3,
        # using the session ID

        url = s3.generate_presigned_url(
            ClientMethod='get_object',
            Params={
                'Bucket': bucket_name,
                'Key': session_id
            }
        )

        # A key replacement is required for URL pre-sign in gcp

        url = url.replace('AWSAccessKeyId', 'GoogleAccessId')

        response = requests.get(url)
        print(len(response.text))
        im_pil = drc.b64_to_pil(response.text)
        return im_pil

    # Pop out the last action
    last_action = action_stack.pop()
    # Apply all the previous action_stack, and gets the image PIL
    im_pil = apply_actions_on_image(
        session_id,
        action_stack,
        filename,
        image_signature
    )
    im_size = im_pil.size

    # Apply the rest of the action_stack
    operation = last_action['operation']
    selectedData = last_action['selectedData']
    type = last_action['type']

    # Select using Lasso
    if selectedData and 'lassoPoints' in selectedData:
        selection_mode = 'lasso'
        selection_zone = generate_lasso_mask(im_pil, selectedData)
    # Select using rectangular box
    elif selectedData and 'range' in selectedData:
        selection_mode = 'select'
        lower, upper = map(int, selectedData['range']['y'])
        left, right = map(int, selectedData['range']['x'])
        # Adjust height difference
        height = im_size[1]
        upper = height - upper
        lower = height - lower
        selection_zone = (left, upper, right, lower)
    # Select the whole image
    else:
        selection_mode = 'select'
        selection_zone = (0, 0) + im_size

    # Apply the filters
    if type == 'filter':
        apply_filters(
            image=im_pil,
            zone=selection_zone,
            filter=operation,
            mode=selection_mode
        )
    elif type == 'enhance':
        enhancement = operation['enhancement']
        factor = operation['enhancement_factor']

        apply_enhancements(
            image=im_pil,
            zone=selection_zone,
            enhancement=enhancement,
            enhancement_factor=factor,
            mode=selection_mode
        )

    return im_pil
def apply_actions_on_image(session_id, action_stack, filename,
                           image_signature):
    action_stack = deepcopy(action_stack)

    # If we have arrived to the original image
    if len(action_stack) == 0 and LOCAL:
        with open("image_string.csv", mode="r") as image_file:
            image_reader = csv.DictReader(image_file)
            for row in image_reader:
                im_pil = drc.b64_to_pil(row["image"])
                return im_pil

    if len(action_stack) == 0 and not LOCAL:
        pass

    # Pop out the last action
    last_action = action_stack.pop()
    # Apply all the previous action_stack recursively, and gets the image PIL
    im_pil = apply_actions_on_image(session_id, action_stack, filename,
                                    image_signature)
    im_size = im_pil.size

    # Apply the rest of the action_stack
    operation = last_action["operation"]
    selected_data = last_action["selectedData"]
    action_type = last_action["type"]

    # Select using Lasso
    if selected_data and "lassoPoints" in selected_data:
        selection_mode = "lasso"
        selection_zone = utils.generate_lasso_mask(im_pil, selected_data)
    # Select using rectangular box
    elif selected_data and "range" in selected_data:
        selection_mode = "select"
        lower, upper = map(int, selected_data["range"]["y"])
        left, right = map(int, selected_data["range"]["x"])
        # Adjust height difference
        height = im_size[1]
        upper = height - upper
        lower = height - lower
        selection_zone = (left, upper, right, lower)
    # Select the whole image
    else:
        selection_mode = "select"
        selection_zone = (0, 0) + im_size

    # Apply the filters
    if action_type == "filter":
        utils.apply_filters(image=im_pil,
                            zone=selection_zone,
                            filter=operation,
                            mode=selection_mode)
    elif action_type == "enhance":
        enhancement = operation["enhancement"]
        factor = operation["enhancement_factor"]

        utils.apply_enhancements(
            image=im_pil,
            zone=selection_zone,
            enhancement=enhancement,
            enhancement_factor=factor,
            mode=selection_mode,
        )

    return im_pil
Exemplo n.º 5
0
def update_graph_interactive_image(content, n_clicks, figure, selectedData,
                                   filters, enhance, enhancement_factor,
                                   new_filename, dragmode, enc_format,
                                   storage):
    t1 = time.time()

    # Retrieve metadata stored in the storage
    filename = storage

    # If the file has changed (when a file is uploaded)
    if new_filename and new_filename != filename:
        if DEBUG:
            print(filename, "replaced by", new_filename)

        string = content.split(';base64,')[-1]
        im_pil = drc.b64_to_pil(string)

    # If the file HAS NOT changed (which means an operation was applied)
    else:
        # Retrieve the image stored inside the figure
        enc_str = figure['layout']['images'][0]['source'].split(';base64,')[-1]
        # Creates the PIL Image object from the b64 png encoding
        im_pil = drc.b64_to_pil(string=enc_str)
        im_size = im_pil.size

        # Select using Lasso
        if selectedData and 'lassoPoints' in selectedData:
            selection_mode = 'lasso'
            selection_zone = generate_lasso_mask(im_pil, selectedData)
        # Select using rectangular box
        elif selectedData and 'range' in selectedData:
            selection_mode = 'select'
            lower, upper = map(int, selectedData['range']['y'])
            left, right = map(int, selectedData['range']['x'])
            # Adjust height difference
            height = im_size[1]
            upper = height - upper
            lower = height - lower
            selection_zone = (left, upper, right, lower)
        # Select the whole image
        else:
            selection_mode = 'select'
            selection_zone = (0, 0) + im_size

        # If the filter dropdown was chosen, apply the filter selected by the user
        if filters:
            apply_filters(image=im_pil,
                          zone=selection_zone,
                          filter=filters,
                          mode=selection_mode)

        if enhance:
            apply_enhancements(image=im_pil,
                               zone=selection_zone,
                               enhancement=enhance,
                               enhancement_factor=enhancement_factor,
                               mode=selection_mode)

    t2 = time.time()
    if DEBUG:
        print(f"Updated Image Storage in {t2-t1:.3f} sec")

    return [
        drc.InteractiveImagePIL(image_id='interactive-image',
                                image=im_pil,
                                enc_format=enc_format,
                                display_mode='fixed',
                                dragmode=dragmode,
                                verbose=DEBUG),
        html.Div(id='div-filename-image',
                 children=new_filename,
                 style={'display': 'none'})
    ]