Exemplo n.º 1
0
def main():
    with tf.variable_scope('input') as scope:
        # use variable instead of placeholder because we're training the intial image to make it
        # look like both the content image and the style image
        input_image = tf.Variable(np.zeros([1, IMAGE_HEIGHT, IMAGE_WIDTH, 3]), dtype=tf.float32)
    
    utils.download(VGG_DOWNLOAD_LINK, VGG_MODEL, EXPECTED_BYTES)
    model = vgg_model.load_vgg(VGG_MODEL, input_image)
    model['global_step'] = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step')
    
    content_image = utils.get_resized_image(CONTENT_IMAGE, IMAGE_HEIGHT, IMAGE_WIDTH)
    content_image = content_image - MEAN_PIXELS
    style_image = utils.get_resized_image(STYLE_IMAGE, IMAGE_HEIGHT, IMAGE_WIDTH)
    style_image = style_image - MEAN_PIXELS

    model['content_loss'], model['style_loss'], model['total_loss'] = _create_losses(model, 
                                                    input_image, content_image, style_image)
    ###############################
    ## TO DO: create optimizer
    model['optimizer'] = tf.train.AdamOptimizer(LR).minimize(model['total_loss'], 
                                                            global_step=model['global_step'])
    ###############################
    model['summary_op'] = _create_summary(model)

    initial_image = utils.generate_noise_image(content_image, IMAGE_HEIGHT, IMAGE_WIDTH, NOISE_RATIO)
    train(model, input_image, initial_image)
Exemplo n.º 2
0
    def __init__(self, content_img, style_img, img_width, img_height):
        """
        img_width and img_height are the dimensions we expect from the generated image.
        We will resize input content image and input style image to match this dimension.
        Feel free to alter any hyperparameter here and see how it affects your training.
        """
        self.img_width = img_width
        self.img_height = img_height
        self.content_img = utils.get_resized_image(content_img, img_width,
                                                   img_height)
        self.style_img = utils.get_resized_image(style_img, img_width,
                                                 img_height)
        self.initial_img = utils.generate_noise_image(self.content_img,
                                                      img_width, img_height)

        ###############################
        ## TO DO
        ## create global step (gstep) and hyperparameters for the model
        self.content_layer = "conv4_2"
        self.style_layers = [
            "conv1_1", "conv2_1", "conv3_1", "conv4_1", "conv5_1"
        ]
        # content_w, style_w: corresponding weights for content loss and style loss
        self.content_w = 0.01
        self.style_w = 1
        # style_layer_w: weights for different style layers. deep layers have more weights
        self.style_layer_w = [0.5, 1.0, 1.5, 3.0, 4.0]
        self.gstep = tf.Variable(0,
                                 dtype=tf.int32,
                                 trainable=False,
                                 name="global_step")  # global step
        self.lr = 2.0
    def __init__(self, content_img, style_img, img_width, img_height):

        self.content_name = str(content_img.split("/")[-1].split(".")[0])
        self.style_name = str(style_img.split("/")[-1].split(".")[0])
        self.img_width = img_width
        self.img_height = img_height

        self.content_img = utils.get_resized_image(content_img, img_width,
                                                   img_height)
        self.style_img = utils.get_resized_image(style_img, img_width,
                                                 img_height)
        self.initial_img = utils.generate_noise_image(self.content_img,
                                                      img_width, img_height)

        self.content_layer = "conv4_2"
        self.style_layers = [
            "conv1_1", "conv2_1", "conv3_1", "conv4_1", "conv5_1"
        ]

        # 定义content loss和style loss的权重
        self.content_w = 0.001
        self.style_w = 1

        self.style_layer_w = [0.5, 1.0, 1.5, 3.0, 4.0]

        self.gstep = tf.Variable(0,
                                 dtype=tf.int32,
                                 trainable=False,
                                 name="global_step")  # global step
        self.lr = 2.0

        utils.safe_mkdir("outputs/%s_%s" %
                         (self.content_name, self.style_name))
    def __init__(self, content_img, style_img, img_width, img_height):
        '''
        img_width and img_height are the dimensions we expect from the generated image.
        We will resize input content image and input style image to match this dimension.
        Feel free to alter any hyperparameter here and see how it affects your training.
        '''
        self.img_width = img_width
        self.img_height = img_height
        self.content_img = utils.get_resized_image(content_img, img_width,
                                                   img_height)
        self.style_img = utils.get_resized_image(style_img, img_width,
                                                 img_height)
        self.initial_img = utils.generate_noise_image(self.content_img,
                                                      img_width, img_height)

        ###############################
        ## TO DO
        ## create global step (gstep) and hyperparameters for the model
        self.content_layer = 'conv4_2'
        self.style_layers = [
            'conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv5_1'
        ]
        # content_w, style_w: corresponding weights for content loss and style loss
        self.content_w = None
        self.style_w = None
        # style_layer_w: weights for different style layers. deep layers have more weights
        self.style_layer_w = [0.5, 1.0, 1.5, 3.0, 4.0]
        self.gstep = None  # global step
        self.lr = None
Exemplo n.º 5
0
def main():
    with tf.variable_scope('input') as scope:
        # use variable instead of placeholder because we're training the intial image to make it
        # look like both the content image and the style image
        input_image = tf.Variable(np.zeros([1, IMAGE_HEIGHT, IMAGE_WIDTH, 3]),
                                  dtype=tf.float32)

    utils.download(VGG_DOWNLOAD_LINK, VGG_MODEL, EXPECTED_BYTES)
    model = vgg_model.load_vgg(VGG_MODEL, input_image)
    model['global_step'] = tf.Variable(0,
                                       dtype=tf.int32,
                                       trainable=False,
                                       name='global_step')

    content_image = utils.get_resized_image(CONTENT_IMAGE, IMAGE_HEIGHT,
                                            IMAGE_WIDTH)
    content_image = content_image - MEAN_PIXELS
    style_image = utils.get_resized_image(STYLE_IMAGE, IMAGE_HEIGHT,
                                          IMAGE_WIDTH)
    style_image = style_image - MEAN_PIXELS

    model['content_loss'], model['style_loss'], model[
        'total_loss'] = _create_losses(model, input_image, content_image,
                                       style_image)
    ###############################
    ## TO DO: create optimizer
    model['optimizer'] = tf.train.AdamOptimizer(learning_rate).minimize(
        model['total_loss'], global_step=model['global_step'])
    ###############################
    model['summary_op'] = _create_summary(model)

    initial_image = utils.generate_noise_image(content_image, IMAGE_HEIGHT,
                                               IMAGE_WIDTH, NOISE_RATIO)
    train(model, input_image, initial_image)
Exemplo n.º 6
0
def train():
    config = tf.ConfigProto(allow_soft_placement=True)
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)
    _, content_image = load_image(FLAGS.content_image, FLAGS.image_height,
                                  FLAGS.image_width)

    gen_image = generate_noise_image(content_image, 0.75, FLAGS.image_height,
                                     FLAGS.image_width, FLAGS.color_channels)
    input_image_list = np.reshape(gen_image, ((1, ) + gen_image.shape))

    model = load_vgg_model(FLAGS.vgg_model_path, FLAGS.image_height,
                           FLAGS.image_width, FLAGS.color_channels)
    sess.run(model['input'].assign(input_image_list))
    train_step, total_loss = train_one_step(sess, model, FLAGS.image_height,
                                            FLAGS.image_width)
    sess.run(tf.global_variables_initializer())
    for iter in range(FLAGS.iteration):
        sess.run(train_step)
        if iter % 50 == 0:
            mixed_image = sess.run(model['input'])
            print('Iteration {}: loss = {:e}'.format(iter,
                                                     sess.run(total_loss)))

            if not os.path.exists(FLAGS.output):
                os.mkdir(FLAGS.output)

            filename = 'output/{}.png'.format(iter)
            save_image(filename, mixed_image[0])
Exemplo n.º 7
0
def training(STYLE_IMAGE, CONTENT_IMAGE, LR, ITERS, NOISE_RATIO, model_load,
             trainable_signal):
    with tf.variable_scope('input') as scope:
        input_image = tf.Variable(np.zeros([1, IMAGE_HEIGHT, IMAGE_WIDTH, 3]),
                                  dtype=tf.float32)

    utils.download(VGG_DOWNLOAD_LINK, VGG_MODEL, EXPECTED_BYTES)
    model = vgg_model.load_vgg(VGG_MODEL, input_image)
    model['global_step'] = tf.Variable(0,
                                       dtype=tf.int32,
                                       trainable=False,
                                       name='global_step')

    content_image = utils.get_resized_image(CONTENT_IMAGE, IMAGE_HEIGHT,
                                            IMAGE_WIDTH)
    content_image = content_image - MEAN_PIXELS
    style_image = utils.get_resized_image(STYLE_IMAGE, IMAGE_HEIGHT,
                                          IMAGE_WIDTH)
    style_image = style_image - MEAN_PIXELS

    model['content_loss'], model['style_loss'], model[
        'total_loss'] = _create_losses(model, input_image, content_image,
                                       style_image)

    model['optimizer'] = tf.train.AdamOptimizer(learning_rate=LR).minimize(
        model['total_loss'], global_step=model['global_step'])
    model['summary_op'] = _create_summary(model)

    initial_image = utils.generate_noise_image(content_image, IMAGE_HEIGHT,
                                               IMAGE_WIDTH, NOISE_RATIO)

    train(model, input_image, initial_image, ITERS, model_load,
          trainable_signal)
Exemplo n.º 8
0
    def __init__(self, content_img, style_img, img_width, img_height):
        """
        初始化
        
        :param content_img: 待转换风格的图片(保留内容的图片)
        :param style_img: 风格图片(保留风格的图片)
        :param img_width: 图片的width
        :param img_height: 图片的height
        """
        # 获取基本信息
        self.content_name = str(content_img.split("/")[-1].split(".")[0])
        self.style_name = str(style_img.split("/")[-1].split(".")[0])
        self.img_width = img_width
        self.img_height = img_height
        # 规范化图片的像素尺寸
        self.content_img = utils.get_resized_image(content_img, img_width, img_height)
        self.style_img = utils.get_resized_image(style_img, img_width, img_height)
        self.initial_img = utils.generate_noise_image(self.content_img, img_width, img_height)

        # 定义提取特征的层
        self.content_layer = "conv4_2"
        self.style_layers = ["conv1_1", "conv2_1", "conv3_1", "conv4_1", "conv5_1"]

        # 定义content loss和style loss的权重
        self.content_w = 0.001
        self.style_w = 1

        # 不同style layers的权重,层数越深权重越大
        self.style_layer_w = [0.5, 1.0, 1.5, 3.0, 4.0]

        # global step和学习率
        self.gstep = tf.Variable(0, dtype=tf.int32, trainable=False, name="global_step")  # global step
        self.lr = 2.0

        utils.safe_mkdir("outputs/%s_%s" % (self.content_name, self.style_name))
Exemplo n.º 9
0
    def generate_image(self):

        with tf.Session() as sess:
            # Now, we initialize the "generated" image as a noisy image created from the content_image.
            # By initializing the pixels of the generated image to be mostly noise but still slightly
            # correlated with the content image, this will help the content of the "generated" image
            # more rapidly match the content of the "content" image.
            noise_image = generate_noise_image(self.content_image)

            # Assign the content image to be the input of the VGG model.
            sess.run(self.model['input'].assign(self.content_image))
            # Select the output tensor of layer conv4_2
            out = self.model['conv4_2']
            # Set a_C to be the hidden layer activation from the layer we have selected
            a_C = sess.run(out)
            a_G = out
            # Compute the content cost
            content_cost = compute_content_cost(a_C, a_G)

            # Assign the input of the model to be the "style" image
            sess.run(self.model['input'].assign(self.style_image))
            # Compute the style cost
            style_cost = compute_style_cost(sess, self.model, STYLE_LAYERS)

            generated_image = self._train_iters(sess,
                                                (content_cost, style_cost),
                                                noise_image)

        tf.reset_default_graph()

        self._save_image(generated_image)
        return generated_image
Exemplo n.º 10
0
    def __init__(self, content_img, style_img, img_width, img_height):
        '''
        img_width and img_height are the dimensions we expect from the generated image.
        We will resize input content image and input style image to match this dimension.
        Feel free to alter any hyperparameter here and see how it affects your training.
        '''
        self.img_width = img_width
        self.img_height = img_height
        self.content_img = utils.get_resized_image(content_img, img_width,
                                                   img_height)
        self.style_img = utils.get_resized_image(style_img, img_width,
                                                 img_height)
        self.initial_img = utils.generate_noise_image(self.content_img,
                                                      img_width, img_height)

        ###############################
        ## TO DO
        ## create global step (gstep) and hyperparameters for the model
        self.content_layer = 'conv4_2'
        self.style_layers = [
            'conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv5_1'
        ]
        self.content_w = 0.1
        self.style_w = 5
        self.style_layer_w = [0.5, 1.0, 1.5, 3.0, 4.0]
        self.gstep = tf.Variable(0,
                                 dtype=tf.int32,
                                 trainable=False,
                                 name='global_step')
        self.lr = 2.0
Exemplo n.º 11
0
def main():
    with tf.variable_scope('input') as scope:
        input_image = tf.Variable(np.zeros([1, IMAGE_HEIGHT, IMAGE_WIDTH, 3]),
                                  dtype=tf.float32)

    utils.download(VGG_DOWNLOAD_LINK, VGG_MODEL, EXPECTED_BYTES)
    utils.make_dir(CHECKPOINT_DIR)
    # utils.make_dir('outputs')
    utils.make_dir(OUT_DIR)
    model = vgg_model.load_vgg(VGG_MODEL, input_image)
    model['global_step'] = tf.Variable(0,
                                       dtype=tf.int32,
                                       trainable=False,
                                       name='global_step')

    # because PIL is column major so need to change place of width and height
    content_image = utils.get_resized_image(CONTENT_IMAGE, IMAGE_HEIGHT,
                                            IMAGE_WIDTH)
    content_image = content_image - MEAN_PIXELS
    style_image = utils.get_resized_image(STYLE_IMAGE, IMAGE_HEIGHT,
                                          IMAGE_WIDTH)
    style_image = style_image - MEAN_PIXELS

    model['content_loss'], model['style_loss'], model[
        'total_loss'] = _create_losses(model, input_image, content_image,
                                       style_image)

    model['optimizer'] = tf.train.AdamOptimizer(LR).minimize(
        model['total_loss'], global_step=model['global_step'])

    model['summary_op'] = _create_summary(model)

    initial_image = utils.generate_noise_image(content_image, IMAGE_HEIGHT,
                                               IMAGE_WIDTH, NOISE_RATIO)
    train(model, input_image, initial_image)
Exemplo n.º 12
0
    def __init__(self, content_img, style_img, img_width, img_height):
        """
        初始化
        
        :param content_img: 待转换风格的图片(保留内容的图片)
        :param style_img: 风格图片(保留风格的图片)
        :param img_width: 图片的width
        :param img_height: 图片的height
        """
        # 获取基本信息
        self.content_name = str(content_img.split("/")[-1].split(".")[0])
        self.style_name = str(style_img.split("/")[-1].split(".")[0])
        self.img_width = img_width
        self.img_height = img_height
        # 规范化图片的像素尺寸
        self.content_img = utils.get_resized_image(content_img, img_width,
                                                   img_height)
        self.style_img = utils.get_resized_image(style_img, img_width,
                                                 img_height)
        self.initial_img = utils.generate_noise_image(self.content_img,
                                                      img_width, img_height)

        # 定义提取特征的层
        self.content_layer = "conv4_2"
        self.style_layers = [
            "conv1_1", "conv2_1", "conv3_1", "conv4_1", "conv5_1"
        ]

        # 定义content loss和style loss的权重
        self.content_w = 0.001
        self.style_w = 1

        # 不同style layers的权重,层数越深权重越大
        self.style_layer_w = [0.5, 1.0, 1.5, 3.0, 4.0]

        # global step和学习率
        self.gstep = tf.Variable(0,
                                 dtype=tf.int32,
                                 trainable=False,
                                 name="global_step")  # global step
        self.lr = 2.0

        utils.safe_mkdir("outputs/%s_%s" %
                         (self.content_name, self.style_name))
Exemplo n.º 13
0
 def __init__(self, content_img, style_img, img_width, img_height):
     '''
     img_width and img_height are the dimensions we expect from the generated image.
     We will resize input content image and input style image to match this dimension.
     Feel free to alter any hyperparameter here and see how it affects your training.
     '''
     self.img_width = img_width
     self.img_height = img_height
     self.content_img = utils.get_resized_image(content_img, img_width, img_height)
     self.style_img = utils.get_resized_image(style_img, img_width, img_height)
     self.initial_img = utils.generate_noise_image(self.content_img, img_width, img_height)
     self.content_layer = 'conv4_2'
     self.style_layers = ['conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv5_1']
     self.content_w = 0.01
     self.style_w = 1
     self.style_layer_w = [0.5, 1.0, 1.5, 3.0, 4.0] 
     self.gstep = tf.Variable(0, dtype=tf.int32, 
                             trainable=False, name='global_step')
     self.lr = 2.0
Exemplo n.º 14
0
    def _image_processing(self):
        """
        prepare images before starting to train
        """
        logger.debug("setting up tf input pipeline ...")

        # image processing
        content_image = get_resized_image(self.params.content_image,
                                          self.params.image_height,
                                          self.params.image_width)
        self.content_image = content_image - MEAN_PIXELS
        style_image = get_resized_image(self.params.style_image,
                                        self.params.image_height,
                                        self.params.image_width)
        self.style_image = style_image - MEAN_PIXELS

        # this non tf variable will hold the final generated image
        self.initial_image = generate_noise_image(self.content_image, \
                                        self.params.image_height, self.params.image_width, \
                                        self.params.noise_ratio)
Exemplo n.º 15
0
def main():
    _setting_parameters()
    with tf.device('/cpu:0'):  #Change to '/gpu:0' if having a GPU
        with tf.variable_scope('input') as scope:
            # use variable instead of placeholder because we're training the initial image to make it
            # look like both the content image and the style image
            input_image = tf.Variable(np.zeros(
                [1, IMAGE_HEIGHT, IMAGE_WIDTH, 3]),
                                      dtype=tf.float32)

        #Downloads the pretrained model
        utils.download(VGG_DOWNLOAD_LINK, VGG_MODEL, EXPECTED_BYTES)
        model = vgg_model.load_vgg(VGG_MODEL, input_image)
        model['global_step'] = tf.Variable(0,
                                           dtype=tf.int32,
                                           trainable=False,
                                           name='global_step')

        content_image = utils.get_resized_image(CONTENT_IMAGE, IMAGE_HEIGHT,
                                                IMAGE_WIDTH)
        content_image = content_image - MEAN_PIXELS
        style_image = utils.get_resized_image(STYLE_IMAGE, IMAGE_HEIGHT,
                                              IMAGE_WIDTH)
        style_image = style_image - MEAN_PIXELS

        model['content_loss'], model['style_loss'], model[
            'total_loss'] = _create_losses(model, input_image, content_image,
                                           style_image)

        #Optimizer looking to reduce the total_loss of the model
        #TensorFlow optimizers: https://www.tensorflow.org/api_docs/python/tf/train
        model['optimizer'] = tf.train.AdamOptimizer(LR).minimize(
            model['total_loss'], global_step=model['global_step'])
        model['summary_op'] = _create_summary(model)

        initial_image = utils.generate_noise_image(content_image, IMAGE_HEIGHT,
                                                   IMAGE_WIDTH, NOISE_RATIO)
        train(model, input_image, initial_image)
    #Showing the image one it is finished
    image_path = 'outputs/%d.png' % (ITERS - 1)
    utils.show_image(image_path)
Exemplo n.º 16
0
 def __init__(self, content_img, style_img, img_width, img_height):
     self.img_width = img_width
     self.img_height = img_height
     self.content_img = utils.get_resized_image(content_img, img_width,
                                                img_height)
     self.style_img = utils.get_resized_image(style_img, img_width,
                                              img_height)
     self.initial_img = utils.generate_noise_image(self.content_img,
                                                   img_width, img_height)
     self.content_layer = 'conv4_2'
     self.style_layers = [
         'conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv5_1'
     ]
     self.content_w = 0.001
     self.style_w = 0.01
     self.style_layer_w = [0.5, 1.0, 1.5, 3.0, 4.0]
     self.gstep = tf.Variable(0,
                              dtype=tf.int32,
                              trainable=False,
                              name='global_step')
     self.lr = 0.1
Exemplo n.º 17
0
def style_transfer(cfg):

    with tf.variable_scope('input') as scope:
        # use variable instead of placeholder because we're training the intial image to make it
        # look like both the content image and the style image
        input_image = tf.Variable(np.zeros(
            [1, cfg.image_height, cfg.image_width, 3]),
                                  dtype=tf.float32)

    utils.download(VGG_DOWNLOAD_LINK, VGG_MODEL, EXPECTED_BYTES)
    utils.make_dir(cfg.checkpoints)
    utils.make_dir(cfg.outputs)
    model = vgg_model.load_vgg(VGG_MODEL, input_image)
    model['global_step'] = tf.Variable(0,
                                       dtype=tf.int32,
                                       trainable=False,
                                       name='global_step')

    content_image = utils.get_resized_image(cfg.content_image,
                                            cfg.image_height, cfg.image_width)
    content_image = content_image - MEAN_PIXELS
    style_image = utils.get_resized_image(cfg.style_image, cfg.image_height,
                                          cfg.image_width)
    style_image = style_image - MEAN_PIXELS

    model['content_loss'], model['style_loss'], model[
        'total_loss'] = _create_losses(model, input_image, content_image,
                                       style_image, cfg)
    logging.info('model created')
    ###############################
    ## TO DO: create optimizer
    model['optimizer'] = tf.train.AdamOptimizer(cfg.lr).minimize(
        model['total_loss'], global_step=model['global_step'])
    ###############################
    model['summary_op'] = _create_summary(model)

    initial_image = utils.generate_noise_image(content_image, cfg.image_height,
                                               cfg.image_width,
                                               cfg.noise_ratio)
    train(model, input_image, initial_image, cfg)
Exemplo n.º 18
0
    def __init__(self, content_image, style_image, width, height, channel,
                 content_w, style_w,
                 training_steps, logging_steps=1):

        self.img_width = width
        self.img_height = height
        self.img_channel = channel
        self.input_image = None

        self.content = content_image.split('/')[-1][:-4]
        self.style = style_image.split('/')[-1][:-4]

        self.content_img = utils.image_resize(content_image, self.img_width, self.img_height, save=False)
        self.style_img = utils.image_resize(style_image, self.img_width, self.img_height, save=False)
        self.initial_img = utils.generate_noise_image(self.content_img, self.img_width, self.img_height)

        self.content_layer = ['conv4_2']
        self.style_layers = ['conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv5_1']

        self.content_w = content_w
        self.style_w = style_w

        self.content_layer_w = [1.0]
        self.style_layer_w = [0.5, 1.0, 1.5, 3.0, 4.0]  # [0.2] * 5

        self.vgg19 = None  # VGG19 model

        self.content_loss = 0.
        self.style_loss = 0.
        self.total_loss = 0.

        # Hyper-Parameters
        self.train_steps = training_steps
        self.logging_steps = logging_steps
        self.g_step = tf.Variable(0, trainable=False, name='global_steps')
        self.opt = None
        self.summary = None
        self.lr = 1.

        self.build()
Exemplo n.º 19
0
    def __init__(self, content_img, style_img, img_width, img_height):
        '''
        img_width and img_height are the dimensions we expect from the generated image.
        We will resize input content image and input style image to match this dimension.
        Feel free to alter any hyperparameter here and see how it affects your training.
        '''
        self.img_width = img_width
        self.img_height = img_height
        self.content_img = utils.get_resized_image(content_img, img_width,
                                                   img_height)
        self.style_img = utils.get_resized_image(style_img, img_width,
                                                 img_height)
        self.initial_img = utils.generate_noise_image(self.content_img,
                                                      img_width, img_height)

        ###############################
        ## TO DO
        ## create global step (gstep) and hyperparameters for the model
        self.content_layer = 'conv4_2'
        self.style_layers = [
            'conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv5_1'
        ]
        # content_w, style_w: corresponding weights for content loss and style loss
        self.content_w = 1
        self.style_w = 20
        # style_layer_w: weights for different style layers. deep layers have more weights
        self.style_layer_w = [0.5, 1.0, 1.5, 3.0, 4.0]
        self.gstep = tf.Variable(0,
                                 dtype=tf.int32,
                                 trainable=False,
                                 name='global_step')
        starter_learning_rate = 0.1
        self.lr = tf.train.exponential_decay(starter_learning_rate,
                                             self.gstep,
                                             100000,
                                             0.96,
                                             staircase=True)
Exemplo n.º 20
0
def main():
    """ main function to run the style transfer.
  """
    parser = argparse.ArgumentParser()
    parser.add_argument("-s", "--style", type=str, help="style image")
    parser.add_argument("-c", "--content", type=str, help="content image")
    parser.add_argument("--height", type=int, default=255, help="image height")
    parser.add_argument("--width", type=int, default=333, help="image width")
    parser.add_argument("-nr",
                        "--noise_ratio",
                        type=int,
                        default=0.5,
                        help="noise ratio when combing images")

    args = parser.parse_args()
    CONTENT_IMAGE = args.content
    STYLE_IMAGE = args.style
    IMAGE_HEIGHT = args.height
    IMAGE_WIDTH = args.width
    NR = args.noise_ratio

    with tf.variable_scope("input"):
        # Define input image as variable, so we can directly
        # modify it to get the output image
        input_image = tf.Variable(np.zeros([1, IMAGE_HEIGHT, IMAGE_WIDTH, 3]),
                                  dtype=np.float32)

    # Download the model and make new directories
    utils.download_model(VGG_DOWNLOAD_LINK, VGG_MODEL, EXPECTED_BYTES)
    utils.make_dir("./checkpoints")
    utils.make_dir("./graphs")
    utils.make_dir("./outputs")

    # Initialize the model with given input image
    vgg = vgg_model.VGG_loader(file_path=VGG_MODEL)
    model = vgg.load_image(input_image)
    # Initialize the global step
    model["global_step"] = tf.Variable(0,
                                       dtype=tf.int32,
                                       trainable=False,
                                       name="global_step")

    content_image = utils.get_resized_image(CONTENT_IMAGE, IMAGE_HEIGHT,
                                            IMAGE_WIDTH)
    content_image -= MEAN_PIXELS

    style_image = utils.get_resized_image(STYLE_IMAGE, IMAGE_HEIGHT,
                                          IMAGE_WIDTH)
    style_image -= MEAN_PIXELS

    model["content_loss"], model["style_loss"], model["total_loss"] = (
        _create_losses(model, input_image, content_image, style_image))

    # Define the optimizer
    model["optimizer"] = (tf.train.AdamOptimizer(LR).minimize(
        model["total_loss"]))

    # Define the summary op
    model["summary_op"] = _create_summary(model)

    # Generate initial image
    initial_image = (utils.generate_noise_image(content_image, IMAGE_HEIGHT,
                                                IMAGE_WIDTH, NR))

    # Finally, run the optimizer to get the style transferred image
    train(model, input_image, initial_image)
Exemplo n.º 21
0
def transfer(num_iterations=200):
    # Reset the graph
    tf.reset_default_graph()

    # Start interactive session
    sess = tf.InteractiveSession()

    # Initialize a noisy image by adding random noise to the content_image
    generated_image = generate_noise_image(content_image)

    # load VGG19 model
    model = load_vgg_model("imagenet-vgg-verydeep-19.mat")

    # Assign the content image to be the input of the VGG model.
    sess.run(model['input'].assign(content_image))

    # Select the output tensor of layer conv4_2
    out = model['conv4_2']

    # Set a_C to be the hidden layer activation from the layer we have selected
    a_C = sess.run(out)

    # Set a_G to be the hidden layer activation from same layer. Here, a_G references model['conv4_2']
    # and isn't evaluated yet. Later in the code, we'll assign the image G as the model input, so that
    # when we run the session, this will be the activations drawn from the appropriate layer, with G as input.
    a_G = out

    # Compute the content cost
    J_content = compute_content_cost(a_C, a_G)

    # Assign the input of the model to be the "style" image
    sess.run(model['input'].assign(style_image))

    # Compute the style cost
    J_style = compute_style_cost(sess, model)

    J = total_cost(J_content, J_style, alpha, beta)  # 10,40

    # define optimizer (1 line)
    optimizer = tf.train.AdamOptimizer(2.0)

    # define train_step (1 line)
    train_step = optimizer.minimize(J)

    # Initialize global variables (you need to run the session on the initializer)
    sess.run(tf.global_variables_initializer())

    # Run the noisy input image (initial generated image) through the model. Use assign().
    sess.run(model["input"].assign(generated_image))

    for i in range(num_iterations):

        # Run the session on the train_step to minimize the total cost
        sess.run(train_step)

        # Compute the generated image by running the session on the current model['input']
        generated_image = sess.run(model["input"])

        # Print every 20 iteration.
        if i % 20 == 0:
            Jt, Jc, Js = sess.run([J, J_content, J_style])
            print("Iteration " + str(i) + " :")
            print("total cost = " + str(Jt))
            print("content cost = " + str(Jc))
            print("style cost = " + str(Js))

            # save current generated image in the "/output" directory
            save_image("images/" + str(i) + ".png", generated_image)

    # save last generated image

    save_image("images/output.png", generated_image)

    return generated_image
Exemplo n.º 22
0
tf.reset_default_graph()

with tf.Session() as test:
    np.random.seed(3)
    J_content = np.random.randn()
    J_style = np.random.randn()
    J = total_cost(J_content, J_style)
    print(J)  # 35.34667...

tf.reset_default_graph()
sess = tf.InteractiveSession()

content_image = reshape_and_normalize_image(content_image)
style_image = reshape_and_normalize_image(style_image)
generated_image = generate_noise_image(content_image)

plt.imshow(generated_image[0])
# plt.show()

vgg = tf.keras.applications.VGG19(
    input_tensor=tf.convert_to_tensor(content_image, dtype='float32'))
out = vgg.layers[4].output
a_C = sess.run(out)
a_G = out
J_content = compute_content_cost(a_C, a_G)

vgg = tf.keras.applications.VGG19(
    input_tensor=tf.convert_to_tensor(style_image, dtype='float32'))
J_style = compute_total_style_cost(vgg, STYLE_LAYERS, sess)