Exemplo n.º 1
0
def train(train_loader, model, criterion, optimizer, epoch):

    model.train()
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()

    end = time.time()
    for i, (img, target) in enumerate(train_loader):
        # measure data loading time
        if img is None:
            continue
        data_time.update(time.time() - end)
        encoded_target = Variable(utils.soft_encode_ab(target).float(), requires_grad=False).cuda()
        var = Variable(img.float(), requires_grad=True).cuda()
        # compute output
        output = model(var)
        # record loss
        loss = criterion(output, encoded_target)
        if torch.isnan(loss):
            print('NaN value encountered in loss.')
            continue
        # measure accuracy and record loss
        #prec1, = accuracy(output.data, target)
        losses.update(loss.data, var.size(0))

        # compute gradient and do SGD step
        backwardTime = time.time()
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)

        end = time.time()

        if i % args.print_freq == 0:
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'.format(
                   epoch, i, len(train_loader), batch_time=batch_time,
                   data_time=data_time, loss=losses))
        if (i+1) % 5000 == 0:
            print("Saving checkpoint...")
            save_checkpoint({
                'epoch': epoch,
                'state_dict': model.state_dict(),
            }, args.reduced)
        if (i+1) % 1000 == 0:
            start = time.time()
            batch_num = np.maximum(args.batch_size//4,2)
            idx = i + epoch*len(train_loader)
            imgs = utils.getImages(img, target, output.detach().cpu(), batch_num)
            writer.add_image('data/imgs_gen', imgs, idx)
            print("Img conversion time: ", time.time() - start)
        writer.add_scalar('data/loss_train', losses.avg, i + epoch*len(train_loader))
Exemplo n.º 2
0
    def __init__(self, input_path, output_path):
        self.n = FeedForwardNetwork()
        self.pix_size = 50
        self.input_value = utils.getImages(utils.readLines(input_path))
        self.output_value = utils.readLines(output_path)
        self.inputUnits = self.pix_size * self.pix_size
        self.nbHiddenLayers = 1
        self.hiddenUnits = 500
        self.outputUnits = len(results)
        self.ds = SupervisedDataSet(
            self.pix_size * self.pix_size, len(results))

        self.initializeDataSet()
        self.initilizeNetwork()
        self.trainingOnDataSet()
Exemplo n.º 3
0
def extract_pieces(path, needs_filter, threshold, piece_size):
    pieces = []
    color_images = utils.getImages(path)
    if needs_filter:
        blured_images = utils.median_blur(color_images, 5)
        bws = utils.color_to_bw(blured_images, threshold)
    else:
        bws = utils.color_to_bw(color_images, threshold)
        bws = utils.filter(bw, 2)

    for bw, color_image in zip(bws, color_images):
        (_, cnts, _) = cv2.findContours(bw.copy(), cv2.RETR_LIST,
                                        cv2.CHAIN_APPROX_NONE)
        for contour in cnts:
            bordersize = 15
            x, y, w, h = cv2.boundingRect(contour)
            if (w < piece_size or h < piece_size):
                continue
            new_bw = np.zeros((h + 2 * bordersize, w + 2 * bordersize),
                              dtype='uint8')
            contours_to_draw = []
            contours_to_draw.append(
                utils.translate_contour(contour, bordersize - x,
                                        bordersize - y))
            cv2.drawContours(new_bw, np.asarray(contours_to_draw), -1, 255, -1)
            w += bordersize * 2
            h += bordersize * 2
            x -= bordersize
            y -= bordersize
            mini_color = color_image[y:y + h, x:x + w]
            mini_bw = new_bw
            mini_color = mini_color.copy()
            mini_bw = mini_bw.copy()

            one_piece = piece.create_piece(mini_color, mini_bw, piece_size)
            pieces.append(one_piece)
    return pieces
Exemplo n.º 4
0
def train(train_loader, model_G, model_D, criterion_G, criterion_GAN,
          optimizer_G, optimizer_D, epoch):

    model_D.train()
    model_G.train()
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses_L2 = AverageMeter()
    losses_G = AverageMeter()
    losses_D = AverageMeter()

    end = time.time()
    for i, (real, img_L, target) in enumerate(train_loader):

        ## Code for forward - backward - update pass in Generator and Discriminator
        # Inspired by https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

        data_time.update(time.time() - end)
        var = Variable(img_L.float(), requires_grad=True).cuda()
        real = Variable(real.float(), requires_grad=True).cuda()
        target_class = Variable(utils.soft_encode_ab(target).float(),
                                requires_grad=False).cuda()
        # compute output G(L)
        output = model_G(var)

        # Update gradients for Discriminator
        model_D.module.set_grads(True)
        optimizer_D.zero_grad()
        # Fake loss term
        output_up = interpolate(utils.decode(output),
                                scale_factor=4,
                                mode='bilinear',
                                recompute_scale_factor=True,
                                align_corners=True)
        fake_img = torch.cat([var, output_up], 1)
        fake_prob = model_D(fake_img.detach())
        loss_D_fake = criterion_GAN(fake_prob, False)
        # Real loss term
        real_prob = model_D(real)
        loss_D_real = criterion_GAN(real_prob, True)

        loss_D = (loss_D_real + loss_D_fake) * 0.5
        if torch.isnan(loss_D):
            print('NaN value encountered in loss_D.')
            continue
        loss_D.backward()
        optimizer_D.step()

        # Update gradients for Generator
        model_D.module.set_grads(False)
        optimizer_G.zero_grad()
        fake_prob = model_D(fake_img)
        # Fool the discriminator
        loss_G_GAN = criterion_GAN(fake_prob, True)
        # Regressor loss term
        loss_G_L2 = criterion_G(output, target_class)
        loss_G = loss_G_GAN + loss_G_L2 * 10
        if torch.isnan(loss_G):
            print('NaN value encountered in loss_G.')
            continue
        loss_G.backward()
        optimizer_G.step()

        losses_D.update(loss_D.data, var.size(0))
        losses_G.update(loss_G_GAN.data, var.size(0))
        losses_L2.update(loss_G_L2.data, var.size(0))

        batch_time.update(time.time() - end)
        end = time.time()

        if i % args.print_freq == 0:
            print('Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                  'Loss: G {loss_g.val:.4f} ({loss_g.avg:.4f})\t'
                  'D {loss_d.val:.4f} ({loss_d.avg:.4f})\t'.format(
                      epoch,
                      i,
                      len(train_loader),
                      batch_time=batch_time,
                      data_time=data_time,
                      loss_g=losses_G,
                      loss_d=losses_D))
        if (i + 1) % 5000 == 0:
            print("Saving checkpoint...")
            save_checkpoint(
                {
                    'epoch': epoch + 1,
                    'state_dict_G': model_G.state_dict(),
                    'state_dict_D': model_D.state_dict(),
                }, args.reduced)
        if (i + 1) % 1000 == 0:
            start = time.time()
            batch_num = np.maximum(args.batch_size // 4, 2)
            idx = i + epoch * len(train_loader)
            imgs = utils.getImages(var.detach(),
                                   target.cuda(),
                                   output.detach(),
                                   batch_num,
                                   do_decode=True)
            writer.add_image('data/imgs_gen', imgs, idx)
            print("Img conversion time: ", time.time() - start)
        writer.add_scalar('data/L2_loss_train', losses_L2.avg,
                          i + epoch * len(train_loader))
        writer.add_scalar('data/D_loss_train', losses_D.avg,
                          i + epoch * len(train_loader))
        writer.add_scalar('data/G_loss_train', losses_G.avg,
                          i + epoch * len(train_loader))
Exemplo n.º 5
0
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as matplot
import gzip
import struct
from sklearn import datasets
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import accuracy_score
from sklearn.externals import joblib
import utils

train_size = 60000
test_size = 10000

x_train = utils.getImages('./data/train-images-idx3-ubyte.gz', train_size)
#print(len(x))
#print(x[1].shape)
#image = np.reshape(x[2], (28,28))
#plt.imshow(image, cmap='gray', vmin=0, vmax=255)
#plt.show()
y_train = utils.getLabels("./data/train-labels-idx1-ubyte.gz", train_size)

#### Build the model
mlp = MLPClassifier(hidden_layer_sizes=(15, ),
                    activation='logistic',
                    alpha=1e-4,
                    solver='sgd',
                    tol=1e-4,
                    random_state=1,
                    learning_rate_init=.1,
                    verbose=True)
Exemplo n.º 6
0
def images():
    """ View for docker images
    """
    images = {"images": getImages()}
    return jsonify(images)
Exemplo n.º 7
0
        
            2.1 Traverses the image to detect the faces in the image using Viola Jones Classifier
            
            2.2 Gets the locations in which the image has Faces
            
            2.3 Adds the locations in the global JSON_LIST
            
        3. Dumps the JSON_LIST to results.json
        
        4. STOP        
    """
    args = parse_args()

    TestImgsFolder = args.string

    TestImgs = getImages(TestImgsFolder)

    for i in range(0, len(TestImgs)):

        imgtest = cv2.imread(TestImgsFolder + '/' + TestImgs[i])

        gray = cv2.cvtColor(imgtest, cv2.COLOR_RGB2GRAY)

        locations = getFaceLocations(gray)

        if locations is not None:

            locations = nonMaximalSupression(np.array(locations), 0.25)

            addToJson(TestImgs[i], locations)
Exemplo n.º 8
0
import predict
import utils

x_test = utils.getImages('./data/t10k-images-idx3-ubyte.gz', 100)
y_test = utils.getLabels('./data/t10k-labels-idx1-ubyte.gz', 100)
pred = predict.predictMLPClassifier(x_test[98])
print("Pred: " + str(pred) + ", Actual: " + str(y_test[98]))
Exemplo n.º 9
0
                suggestedLinesField.append('Company')
            elif checkForPhone(line):
                suggestedLinesField.append('Phone')
            elif checkFax(line):
                suggestedLinesField.append('Fax')
            elif checkWebsite(line):
                suggestedLinesField.append('Website')
            else:
                suggestedLinesField.append('')
            lineCount += 1
        lineCount = 0
        suggestedFields.append(suggestedLinesField)
    return suggestedFields

if __name__ == "__main__":
    imgs = utils.getImages('../../stanford_business_cards/photos/', 5)
    # imgs = utils.getImages('../our_cards/', 8)
    DEBUG = True
    # img = utils.readImage('../../stanford_business_cards/photos/004.jpg')
    # imgs = [('',img)]
    # utils.display(imgs)
    good, cardImg = findCard.findCard(imgs[4][1])
    utils.display([('card',cardImg)])
    regions, text = processCard(cardImg)
    processedCard = drawRegions(cardImg, regions)
    suggestedFields = guessFields(regions, text)
    utils.display([('card',processedCard)])

    # scores = []
    # for imgName, img in imgs:
    #     # regions, text = processCard(img)