def calc_feature_combination(args): feature_combination, se, input_dir, use_rf, num_folds, overlap, local, cutoff, num_cores, scoreF, mode, anno, faF, ref_complexes, output_dir = args #Create feature combination cutoff = float(cutoff) / 100 num_folds = int(num_folds) if feature_combination == "00000000": sys.exit() this_scores = get_fs_comb(feature_combination) num_cores = int(num_cores) use_rf = use_rf == "True" overlap = overlap == "True" local = local == "True" clf_name = "SVM" if use_rf: clf_name = "RF" clf = CS.CLF_Wrapper(num_cores, use_rf) ref_gs = Goldstandard_from_cluster_File(ref_complexes) scoreCalc = CS.CalculateCoElutionScores(this_scores, "", scoreF, num_cores=num_cores, cutoff=cutoff) scoreCalc.readTable(scoreF, ref_gs) feature_comb = feature_selector([fs.name for fs in this_scores], scoreCalc) print feature_comb.scoreCalc.scores.shape print scoreCalc.scores.shape if mode == "comb": fa = utils.get_FA_data(anno, faF) feature_comb.add_fun_anno(fa) elif mode == "fa": feature_comb = utils.get_FA_data(anno, faF) print type(feature_comb) elif mode != "exp": print "not support this mode" sys.exit() scores, head = n_fold_cross_validation(num_folds, ref_gs, feature_comb, clf, output_dir, overlap, local) outFH = open(output_dir + ".eval.txt", "w") print "FS\tSE\tCLF\t" + head print "%s\t%s\t%s\t" % (feature_combination, se, clf_name) + scores print >> outFH, "FS\tSE\tCLF\t" + head print >> outFH, "%s\t%s\t%s\t" % (feature_combination, se, clf_name) + scores outFH.close()
def main(): feature_combination, input_dir, use_rf, num_cores, mode, anno_source, anno_F, target_taxid, refF, output_dir = sys.argv[1:] #Create feature combination if feature_combination == "00000000": sys.exit() scores = [CS.MutualInformation(2), CS.Bayes(3), CS.Euclidiean(), CS.Wcc(), CS.Jaccard(), CS.Poisson(5), CS.Pearson(), CS.Apex()] this_scores = [] for i, feature_selection in enumerate(feature_combination): if feature_selection == "1": this_scores.append(scores[i]) print "\t".join([fs.name for fs in this_scores]) # Initialize CLF use_rf = use_rf == "True" num_cores = int(num_cores) clf = CS.CLF_Wrapper(num_cores, use_rf) # Load elution data foundprots, elution_datas = utils.load_data(input_dir, this_scores) # Generate reference data set if refF == "": all_gs = utils.create_goldstandard(target_taxid, foundprots) else: all_gs = Goldstandard_from_cluster_File(refF, foundprots) all_gs = utils.create_goldstandard(target_taxid, foundprots) #all_gs = Goldstandard_from_cluster_File(refF, foundprots) # sys.exit() scoreCalc = CS.CalculateCoElutionScores(this_scores, elution_datas, output_dir + ".scores.txt", num_cores=num_cores, cutoff= 0.5) # scoreCalc.calculate_coelutionDatas(all_gs) scoreCalc.readTable(output_dir + ".scores.txt", all_gs) print "training ppis: %i" % len(set(scoreCalc.ppiToIndex.keys())) #n_fold cross validation to test the stability of preicted PPIs utils.stability_evaluation(10, all_gs, scoreCalc, clf, output_dir, mode, anno_source, anno_F) sys.exit() #n_fold cross validation to select the best features. n_fold_cross_validation(10, all_gs, scoreCalc, clf, output_dir, mode, anno_source, anno_F) sys.exit() ###### actually predict the network using all data train, eval = all_gs.split_into_holdout_training(set(scoreCalc.ppiToIndex.keys())) print "All comp:%i" % len(all_gs.complexes.complexes) print "Train comp:%i" % len(train.complexes.complexes) print "Eval comp:%i" % len(eval.complexes.complexes) print "Num valid ppis in training pos: %i" % len(train.positive) print "Num valid ppis in training neg: %i" % len(train.negative) print "Num valid ppis in eval pos: %i" % len(eval.positive) print "Num valid ppis in eval neg: %i" % len(eval.negative) # Evaluate classifier utils.bench_clf(scoreCalc, train, eval, clf, output_dir, verbose=True) functionalData = "" if mode != "exp": functionalData = utils.get_FA_data(anno_source, anno_F) print functionalData.scores.shape # Predict protein interaction network = utils.make_predictions(scoreCalc, mode, clf, all_gs, functionalData) outFH = open("%s.%s.pred.txt" % (output_dir, mode + anno_source), "w") print >> outFH, "\n".join(network) outFH.close() # Predicting clusters utils.predict_clusters("%s.%s.pred.txt" % (output_dir, mode + anno_source), "%s.%s.clust.txt" % (output_dir, mode + anno_source)) # Evaluating predicted clusters pred_clusters = GS.Clusters(False) pred_clusters.read_file("%s.%s.clust.txt" % (output_dir, mode + anno_source)) # utils.clustering_evaluation(train.complexes, pred_clusters, "Train", True) clusterEvaluationScores = utils.clustering_evaluation(eval.complexes, pred_clusters, "", True) outFH = open("%s.%s.evaluation.txt" % (output_dir, mode + anno_source), "w") head = clusterEvaluationScores[1] cluster_scores = clusterEvaluationScores[0] tmp_head = head.split("\t") tmp_scores = cluster_scores.split("\t") for i in range(len(tmp_head)): outFH.write("%s\t%s" % (tmp_head[i], tmp_scores[i])) outFH.write("\n")
def main(): parser = argparse.ArgumentParser() parser.add_argument( "-s", "--feature_selection", type=str, help= "Select which features to use. This is an 8 position long array of 0 and 1, where each position determines which co-elution feature to use. Features sorted by position are: MI, Bayes, Euclidean, WCC, Jaccard, PCCN, PCC, and Apex. Each default=11101001", default="11101001") parser.add_argument( "input_dir", type=str, help="Directory containing the elution files for each experiment") parser.add_argument( "-t", "--taxid", type=str, help="TAXID to automatically download reference from GO,CORUM,INtACT", default="") parser.add_argument( "-c", "--cluster", type=str, help="Path to file containing protein clsuter reference", default="") parser.add_argument("-p", "--ppi", type=str, help="path to ppi File", default="") parser.add_argument("output_dir", type=str, help="Directory containing the output files") parser.add_argument("-o", "--output_prefix", type=str, help="Prefix name for all output Files", default="Out") parser.add_argument( "-M", "--classifier", type=str, help="Select which classifier to use. Values: RF SVM, default RF", default="RF") parser.add_argument("-n", "--num_cores", type=int, help="Number of cores to be used, default 1", default=1) parser.add_argument( "-m", "--mode", type=str, help= "Run EPIC with experimental, functional, or both evidences. Values: EXP, FA, COMB, default: EXP ", default="EXP") parser.add_argument( "-f", "--fun_anno_source", type=str, help= "Where to get functional annotaiton from. Values: STRING or GM or FILE, default= GM", default="GM") parser.add_argument( "-F", "--fun_anno_file", type=str, help= "Path to File containing functional annotation. This flag needs to be set when using FILE as fun_anno_source.", ) parser.add_argument("-r", "--co_elution_cutoff", type=float, help="Co-elution score cutoff. default 0.5", default=0.5) parser.add_argument( "-R", "--classifier_cutoff", type=float, help="Classifier confidence valye cutoff. default = 0.5", default=0.5) parser.add_argument( "-e", "--elution_max_count", type=int, help= "Removies protein that have a maximal peptide count less than the given value. default = 1", default=1) parser.add_argument( "-E", "--frac_count", type=int, help= "Number of fracrions a protein needs to be measured in. default = 2", default=2) parser.add_argument( "-P", "--precalcualted_score_file", type=str, help= "Path to precalulated scorefile to read scores from for faster rerunning of EPIC. default = None", default="NONE") args = parser.parse_args() args.mode = args.mode.upper() args.fun_anno_source = args.fun_anno_source.upper() #Create feature combination if args.feature_selection == "00000000": print "Select at least one feature" sys.exit() this_scores = utils.get_fs_comb(args.feature_selection) print "\t".join([fs.name for fs in this_scores]) # Initialize CLF use_rf = args.classifier == "RF" clf = CS.CLF_Wrapper(args.num_cores, use_rf) # Load elution data foundprots, elution_datas = utils.load_data(args.input_dir, this_scores, fc=args.frac_count, mfc=args.elution_max_count) # Generate reference data set gs = "" if ((args.taxid != "" and args.ppi != "") or (args.cluster != "" and args.ppi != "")): print "Refernce from cluster and PPI are nor compatiple. Please supply ppi or complex reference, not both!" sys.exit() if args.taxid == "" and args.ppi == "" and args.cluster == "": print "Please supply a reference by setting taxid, cluster, or ppi tag" sys.exit() gs_clusters = [] if (args.taxid != "" and args.cluster == "" and args.ppi == ""): print "Loading clusters from GO, CORUM, and Intact" gs_clusters.extend(utils.get_reference_from_net(args.taxid)) if args.cluster != "": print "Loading complexes from file" if args.mode == "FA": gs_clusters.append(GS.FileClusters(args.cluster, "all")) else: gs_clusters.append(GS.FileClusters(args.cluster, foundprots)) if args.ppi != "": print "Reading PPI file from %s" % args.reference gs = Goldstandard_from_PPI_File(args.ppi, foundprots) print gs_clusters if len(gs_clusters) > 0: gs = utils.create_goldstandard(gs_clusters, args.taxid, foundprots) output_dir = args.output_dir + os.sep + args.output_prefix refFH = open(output_dir + ".ref_complexes.txt", "w") for comp in gs.complexes.complexes: print >> refFH, "%s\t%s" % (",".join(comp), ",".join( gs.complexes.complexes[comp])) refFH.close() scoreCalc = CS.CalculateCoElutionScores(this_scores, elution_datas, output_dir + ".scores.txt", num_cores=args.num_cores, cutoff=args.co_elution_cutoff) if args.precalcualted_score_file == "NONE": scoreCalc.calculate_coelutionDatas(gs) else: scoreCalc.readTable(args.precalcualted_score_file, gs) print scoreCalc.scores.shape functionalData = "" gs.positive = set(gs.positive & set(scoreCalc.ppiToIndex.keys())) gs.negative = set(gs.negative & set(scoreCalc.ppiToIndex.keys())) gs.rebalance() print len(gs.positive) print len(gs.negative) if args.mode != "EXP": print "Loading functional data" functionalData = utils.get_FA_data(args.fun_anno_source, args.taxid, args.fun_anno_file) print "Dimension of fun anno " + str(functionalData.scores.shape) print "Start benchmarking" if args.mode == "EXP": utils.cv_bench_clf(scoreCalc, clf, gs, output_dir, format="pdf", verbose=True, folds=5) if args.mode == "COMB": tmp_sc = copy.deepcopy(scoreCalc) tmp_sc.add_fun_anno(functionalData) utils.cv_bench_clf(tmp_sc, clf, gs, output_dir, format="pdf", verbose=True, folds=5) if args.mode == "FA": utils.cv_bench_clf(functionalData, clf, gs, output_dir, format="pdf", verbose=True, folds=5) # PPI evaluation print utils.cv_bench_clf(scoreCalc, clf, gs, args.output_dir, verbose=False, format="pdf", folds=5) #print "I am here" network = utils.make_predictions(scoreCalc, args.mode, clf, gs, fun_anno=functionalData) # Predict protein interaction outFH = open("%s.pred.txt" % (output_dir), "w") final_network = [] for PPI in network: items = PPI.split("\t") if float(items[2]) >= args.classifier_cutoff: final_network.append(PPI) print >> outFH, "\n".join(final_network) outFH.close() # Predicting clusters utils.predict_clusters("%s.pred.txt" % (output_dir), "%s.clust.txt" % (output_dir)) # Evaluating predicted clusters pred_clusters = GS.Clusters(False) pred_clusters.read_file("%s.clust.txt" % (output_dir)) overlapped_complexes_with_reference = gs.get_complexes( ).get_overlapped_complexes_set(pred_clusters) print "# of complexes in reference dataset: " + str( len(overlapped_complexes_with_reference)) #clust_scores, header = utils.clustering_evaluation(gs.complexes, pred_clusters, "", False) clust_scores, header, composite_score = utils.clustering_evaluation( gs.complexes, pred_clusters, "", False) outFH = open("%s.eval.txt" % (output_dir), "w") header = header.split("\t") clust_scores = clust_scores.split("\t") for i, head in enumerate(header): print "%s\t%s" % (head, clust_scores[i]) print >> outFH, "%s\t%s" % (head, clust_scores[i]) outFH.close()
def exp_comb(args): FS, i, j, num_iter, input_dir, num_cores, ref_complexes, scoreF, mode, fun_anno_F, ppi, output_dir = args i, j, num_iter, num_cores = map(int, [i, j, num_iter, num_cores]) ppi == "True" search_engine = input_dir.split(os.path.sep)[-2] def get_eData_comb(data_dir, num_iex, num_beads): all_exp = map(str, glob.glob(data_dir + "*.txt")) iex_exp = [ f for f in all_exp if (f.split(os.sep)[-1].startswith("all")) ] beads_exp = [ f for f in all_exp if (not f.split(os.sep)[-1].startswith("all")) ] if (i > len(iex_exp)): print "i is to large" sys.exit() if (j > len(beads_exp)): print "j is to large" sys.exit() sel_iex = rnd.sample(iex_exp, num_iex) sel_beads = rnd.sample(beads_exp, num_beads) return sel_iex + sel_beads # EPIC paramters if FS == "00000000": sys.exit() this_scores = get_fs_comb(FS) clf = CS.CLF_Wrapper(num_cores, True) ref_gs = Goldstandard_from_cluster_File(ref_complexes) scoreCalc = CS.CalculateCoElutionScores(this_scores, "", scoreF, num_cores=num_cores, cutoff=0.5) scoreCalc.readTable(scoreF, ref_gs) # the supplied functional evidence data needs to have the correct header row... functionalData = "" if mode == "comb": functionalData = utils.get_FA_data("FILE", fun_anno_F) if i == 0 and j == 0: sys.exit() out_head = "" all_scores = [] for iter in range(num_iter): rnd.seed() this_eprofiles = get_eData_comb(input_dir, i, j) this_eprofiles_fnames = [ f.rsplit(os.sep, 1)[1] for f in this_eprofiles ] rnd.seed(1) print this_eprofiles_fnames this_foundprots, _ = utils.load_data(this_eprofiles, []) print len(this_foundprots) feature_comb = feature_selector( [fs.name for fs in this_scores], scoreCalc, valprots=this_foundprots, elution_file_names=this_eprofiles_fnames) if mode == "comb": feature_comb.add_fun_anno(functionalData) scores = "" head = "" if ppi: print "Running PPI cross fold" ppi_ref = ref_gs.return_gold_standard_complexes( set(feature_comb.scoreCalc.ppiToIndex.keys())) fmeasure, auc_pr, auc_roc = utils.bench_by_PPI_clf( 10, feature_comb, ppi_ref, clf) scores = "\t".join(map(str, [fmeasure, auc_pr, auc_roc])) head = "\tFM\taucPR\taucROC" else: print "Running Cluster cross fold" scores, head = n_fold_cross_validation(2, ref_gs, feature_comb, clf, "%s_%i_%i" % (output_dir, i, j), overlap=True, local=False) # head, scores = run_epic_with_feature_combinations(this_scores, ref_gs, scoreCalc, clf, output_dir, valprots=this_foundprots) out_head = head all_scores.append( "%s\t%s\t%i\t%i\t%s\t%i\t%s" % (FS, mode, i, j, search_engine, len(this_foundprots), scores)) print head print scores outFH = open(output_dir + ".%i_%i.all.eval.txt" % (i, j), "w") print >> outFH, "FS\tNum_iex\tNum_beads\tSearch_engine\tNum_Prots\t%s" % out_head for score in all_scores: print >> outFH, "%s" % (score) outFH.close()