Exemplo n.º 1
0
    def __init__(self, input_dim, hidden_dim, action_dim, num_objects,
                 ignore_action=False, copy_action=False, act_fn='relu'):
        super(TransitionGNN, self).__init__()

        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        self.num_objects = num_objects
        self.ignore_action = ignore_action
        self.copy_action = copy_action

        if self.ignore_action:
            self.action_dim = 0
        else:
            self.action_dim = action_dim

        self.edge_mlp = nn.Sequential(
            nn.Linear(input_dim*2, hidden_dim),
            utils.get_act_fn(act_fn),
            nn.Linear(hidden_dim, hidden_dim),
            nn.LayerNorm(hidden_dim),
            utils.get_act_fn(act_fn),
            nn.Linear(hidden_dim, hidden_dim))

        node_input_dim = hidden_dim + input_dim + self.action_dim

        self.node_mlp = nn.Sequential(
            nn.Linear(node_input_dim, hidden_dim),
            utils.get_act_fn(act_fn),
            nn.Linear(hidden_dim, hidden_dim),
            nn.LayerNorm(hidden_dim),
            utils.get_act_fn(act_fn),
            nn.Linear(hidden_dim, input_dim))

        self.edge_list = None
        self.batch_size = 0
Exemplo n.º 2
0
    def __init__(self,
                 input_dim,
                 hidden_dim,
                 num_objects,
                 output_size,
                 act_fn='relu'):
        super(DecoderCNNMedium, self).__init__()

        width, height = output_size[1] // 5, output_size[2] // 5

        output_dim = width * height

        self.fc1 = nn.Linear(input_dim, hidden_dim)
        self.fc2 = nn.Linear(hidden_dim, hidden_dim)
        self.fc3 = nn.Linear(hidden_dim, output_dim)
        self.ln = nn.LayerNorm(hidden_dim)

        self.deconv1 = nn.ConvTranspose2d(num_objects,
                                          hidden_dim,
                                          kernel_size=5,
                                          stride=5)
        self.deconv2 = nn.ConvTranspose2d(hidden_dim,
                                          output_size[0],
                                          kernel_size=9,
                                          padding=4)

        self.ln1 = nn.BatchNorm2d(hidden_dim)

        self.input_dim = input_dim
        self.num_objects = num_objects
        self.map_size = output_size[0], width, height

        self.act1 = utils.get_act_fn(act_fn)
        self.act2 = utils.get_act_fn(act_fn)
        self.act3 = utils.get_act_fn(act_fn)
Exemplo n.º 3
0
    def __init__(self,
                 input_dim,
                 hidden_dim,
                 num_objects,
                 output_size,
                 act_fn='relu'):
        super(DecoderCNNSmall_test, self).__init__()

        width, height = output_size[1] // 10, output_size[2] // 10

        output_dim = width * height

        self.fc1 = nn.Linear(input_dim, hidden_dim)
        self.fc2 = nn.Linear(hidden_dim, hidden_dim)
        self.fc3 = nn.Linear(hidden_dim, output_dim)
        self.ln = nn.LayerNorm(hidden_dim)

        self.deconv1 = nn.ConvTranspose2d(num_objects,
                                          hidden_dim,
                                          kernel_size=1,
                                          stride=1)
        self.deconv2 = nn.ConvTranspose2d(hidden_dim,
                                          output_size[0],
                                          kernel_size=10,
                                          stride=10)

        self.input_dim = input_dim
        self.num_objects = num_objects
        self.map_size = output_size[0], width, height

        self.act1 = utils.get_act_fn(act_fn)
        self.act2 = utils.get_act_fn(act_fn)
        self.act3 = utils.get_act_fn(act_fn)
Exemplo n.º 4
0
 def __init__(self, input_dim, hidden_dim, num_objects, act_fn='sigmoid',
              act_fn_hid='relu'):
     super(EncoderCNNSmall, self).__init__()
     self.cnn1 = nn.Conv2d(
         input_dim, hidden_dim, (10, 10), stride=10)
     self.cnn2 = nn.Conv2d(hidden_dim, num_objects, (1, 1), stride=1)
     self.ln1 = nn.BatchNorm2d(hidden_dim)
     self.act1 = utils.get_act_fn(act_fn_hid)
     self.act2 = utils.get_act_fn(act_fn)
Exemplo n.º 5
0
    def __init__(self, input_dim, hidden_dim, action_dim, num_objects,
                 ignore_action=False, copy_action=False, act_fn='relu',
                 immovable_bit=False, split_gnn=False, factored_continuous_action=False):
        super(TransitionGNN, self).__init__()

        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        self.num_objects = num_objects
        self.ignore_action = ignore_action
        self.copy_action = copy_action
        self.immovable_bit = immovable_bit
        self.split_gnn = split_gnn
        self.factored_continuous_action = factored_continuous_action

        if self.immovable_bit:
            self.input_dim += 1

        if self.ignore_action:
            self.action_dim = 0
        else:
            self.action_dim = action_dim

        self.edge_mlp = nn.Sequential(
            nn.Linear(self.input_dim*2, hidden_dim),
            utils.get_act_fn(act_fn),
            nn.Linear(hidden_dim, hidden_dim),
            nn.LayerNorm(hidden_dim),
            utils.get_act_fn(act_fn),
            nn.Linear(hidden_dim, hidden_dim))

        if num_objects > 1:
            node_input_dim = hidden_dim + self.input_dim + self.action_dim
        else:
            node_input_dim = self.input_dim + self.action_dim

        self.node_mlp = nn.Sequential(
            nn.Linear(node_input_dim, hidden_dim),
            utils.get_act_fn(act_fn),
            nn.Linear(hidden_dim, hidden_dim),
            nn.LayerNorm(hidden_dim),
            utils.get_act_fn(act_fn),
            nn.Linear(hidden_dim, self.input_dim))

        if self.split_gnn:
            self.edge_mlp1 = self.edge_mlp
            self.edge_mlp2 = cp.deepcopy(self.edge_mlp1)
            self.edge_mlp3 = cp.deepcopy(self.edge_mlp1)

            self.node_mlp1 = self.node_mlp
            self.node_mlp2 = cp.deepcopy(self.node_mlp1)

            del self.node_mlp
            del self.edge_mlp

        self.edge_list = None
        self.batch_size = 0
Exemplo n.º 6
0
    def __init__(self, input_dim, hidden_dim, num_objects, act_fn='sigmoid',
                 act_fn_hid='leaky_relu'):
        super(EncoderCNNMedium, self).__init__()

        self.cnn1 = nn.Conv2d(
            input_dim, hidden_dim, (9, 9), padding=4)
        self.act1 = utils.get_act_fn(act_fn_hid)
        self.ln1 = nn.BatchNorm2d(hidden_dim)

        self.cnn2 = nn.Conv2d(
            hidden_dim, num_objects, (5, 5), stride=5)
        self.act2 = utils.get_act_fn(act_fn)
Exemplo n.º 7
0
    def __init__(self, input_dim, output_dim, hidden_dim, act_fn='relu'):
        super(MLP, self).__init__()

        self.input_dim = input_dim

        self.fc1 = nn.Linear(self.input_dim, hidden_dim)
        self.fc2 = nn.Linear(hidden_dim, hidden_dim)
        self.fc3 = nn.Linear(hidden_dim, output_dim)

        self.ln = nn.LayerNorm(hidden_dim)

        self.act1 = utils.get_act_fn(act_fn)
        self.act2 = utils.get_act_fn(act_fn)
Exemplo n.º 8
0
    def __init__(self, input_dim, hidden_dim, action_dim, act_fn='relu'):
        super(Inverse, self).__init__()

        self.input_dim = input_dim
        self.hidden_dim = hidden_dim
        self.action_dim = action_dim

        self.inverse_mlp = nn.Sequential(
            nn.Linear(input_dim, hidden_dim),
            utils.get_act_fn(act_fn),
            nn.Linear(hidden_dim, hidden_dim),
            # nn.LayerNorm(hidden_dim),  #???????? norm why not good in this case
            utils.get_act_fn(act_fn),
            nn.Linear(hidden_dim, action_dim))
Exemplo n.º 9
0
    def __init__(self, input_dim, hidden_dim, num_objects, output_size,
                 act_fn='relu'):
        super(DecoderMLP, self).__init__()

        self.fc1 = nn.Linear(input_dim + num_objects, hidden_dim)
        self.fc2 = nn.Linear(hidden_dim, hidden_dim)
        self.fc3 = nn.Linear(hidden_dim, np.prod(output_size))

        self.input_dim = input_dim
        self.num_objects = num_objects
        self.output_size = output_size

        self.act1 = utils.get_act_fn(act_fn)
        self.act2 = utils.get_act_fn(act_fn)
Exemplo n.º 10
0
  def __init__(self, mconfig, name=None):
    super().__init__(name=name)

    self.endpoints = {}
    self._mconfig = mconfig

    self._conv_head = tf.keras.layers.Conv2D(
        filters=round_filters(mconfig.feature_size or 1280, mconfig),
        kernel_size=1,
        strides=1,
        kernel_initializer=conv_kernel_initializer,
        padding='same',
        data_format=mconfig.data_format,
        use_bias=False,
        name='conv2d')
    self._norm = utils.normalization(
        mconfig.bn_type,
        axis=(1 if mconfig.data_format == 'channels_first' else -1),
        momentum=mconfig.bn_momentum,
        epsilon=mconfig.bn_epsilon,
        groups=mconfig.gn_groups)
    self._act = utils.get_act_fn(mconfig.act_fn)

    self._avg_pooling = tf.keras.layers.GlobalAveragePooling2D(
        data_format=mconfig.data_format)

    if mconfig.dropout_rate > 0:
      self._dropout = tf.keras.layers.Dropout(mconfig.dropout_rate)
    else:
      self._dropout = None

    self.h_axis, self.w_axis = ([2, 3] if mconfig.data_format
                                == 'channels_first' else [1, 2])
Exemplo n.º 11
0
  def __init__(self, block_args, mconfig, name=None):
    """Initializes a MBConv block.

    Args:
      block_args: BlockArgs, arguments to create a Block.
      mconfig: GlobalParams, a set of global parameters.
      name: layer name.
    """
    super().__init__(name=name)

    self._block_args = copy.deepcopy(block_args)
    self._mconfig = copy.deepcopy(mconfig)
    self._local_pooling = mconfig.local_pooling
    self._data_format = mconfig.data_format
    self._channel_axis = 1 if self._data_format == 'channels_first' else -1

    self._act = utils.get_act_fn(mconfig.act_fn)
    self._has_se = (
        self._block_args.se_ratio is not None and
        0 < self._block_args.se_ratio <= 1)

    self.endpoints = None

    # Builds the block accordings to arguments.
    self._build()
Exemplo n.º 12
0
  def __init__(self, mconfig, se_filters, output_filters, name=None):
    super().__init__(name=name)

    self._local_pooling = mconfig.local_pooling
    self._data_format = mconfig.data_format
    self._act = utils.get_act_fn(mconfig.act_fn)

    # Squeeze and Excitation layer.
    self._se_reduce = tf.keras.layers.Conv2D(
        se_filters,
        kernel_size=1,
        strides=1,
        kernel_initializer=conv_kernel_initializer,
        padding='same',
        data_format=self._data_format,
        use_bias=True,
        name='conv2d')
    self._se_expand = tf.keras.layers.Conv2D(
        output_filters,
        kernel_size=1,
        strides=1,
        kernel_initializer=conv_kernel_initializer,
        padding='same',
        data_format=self._data_format,
        use_bias=True,
        name='conv2d_1')
Exemplo n.º 13
0
    def __init__(self, input_dim, hidden_dim, num_objects, act_fn='sigmoid',
                 act_fn_hid='relu'):
        super(EncoderCNNLarge, self).__init__()

        self.cnn1 = nn.Conv2d(input_dim, hidden_dim, (3, 3), padding=1)
        self.act1 = utils.get_act_fn(act_fn_hid)
        self.ln1 = nn.BatchNorm2d(hidden_dim)

        self.cnn2 = nn.Conv2d(hidden_dim, hidden_dim, (3, 3), padding=1)
        self.act2 = utils.get_act_fn(act_fn_hid)
        self.ln2 = nn.BatchNorm2d(hidden_dim)

        self.cnn3 = nn.Conv2d(hidden_dim, hidden_dim, (3, 3), padding=1)
        self.act3 = utils.get_act_fn(act_fn_hid)
        self.ln3 = nn.BatchNorm2d(hidden_dim)

        self.cnn4 = nn.Conv2d(hidden_dim, num_objects, (3, 3), padding=1)
        self.act4 = utils.get_act_fn(act_fn)
Exemplo n.º 14
0
    def __init__(self,
                 input_dim,
                 output_dim,
                 hidden_dim,
                 num_objects,
                 act_fn='relu'):
        super(EncoderMLP, self).__init__()

        self.num_objects = num_objects
        self.input_dim = input_dim
        print(self.input_dim)
        self.fc1 = nn.Linear(self.input_dim, hidden_dim)
        self.fc2 = nn.Linear(hidden_dim, hidden_dim)
        self.fc3 = nn.Linear(hidden_dim, output_dim)

        self.ln = nn.LayerNorm(hidden_dim)

        self.act1 = utils.get_act_fn(act_fn)
        self.act2 = utils.get_act_fn(act_fn)
Exemplo n.º 15
0
 def __init__(self, mconfig, stem_filters, name=None):
   super().__init__(name=name)
   self._conv_stem = tf.keras.layers.Conv2D(
       filters=round_filters(stem_filters, mconfig),
       kernel_size=3,
       strides=2,
       kernel_initializer=conv_kernel_initializer,
       padding='same',
       data_format=mconfig.data_format,
       use_bias=False,
       name='conv2d')
   self._norm = utils.normalization(
       mconfig.bn_type,
       axis=(1 if mconfig.data_format == 'channels_first' else -1),
       momentum=mconfig.bn_momentum,
       epsilon=mconfig.bn_epsilon,
       groups=mconfig.gn_groups)
   self._act = utils.get_act_fn(mconfig.act_fn)