Exemplo n.º 1
0
 def test_catalog_creation(self):
     path = os.path.dirname(utils.__file__)
     fullpath = os.path.join(path, 'utils.py')
     (size, date) = utils.get_file_info(fullpath)
     self.assertTrue(size)
     self.assertTrue(date)
     return
Exemplo n.º 2
0
def draw_lineplot(filename,
                  save_dir,
                  type='mean',
                  node_no=0,
                  save_plots=False,
                  plot_time=5):
    file_desc = utils.get_file_info(filename)
    layer = file_desc['layer_name']
    means, stds = utils.load_mean_std_from_file(filename)
    data = means if type == 'mean' else stds

    means = []
    for i in range(len(data)):
        sample = data[i].reshape((file_desc['batch_size'], -1))
        means.append(np.mean(sample[:, node_no]))

    x = np.hstack([np.arange(0, file_desc['number_of_epochs'], 1 / freq)])
    sns.lineplot(x, means)
    plt.title(f'Average value of {type} for node {node_no} of {layer}')
    plt.xlabel('Epoch Number')
    plt.ylabel(f'Average {type}s')
    plt.show(block=False)
    plt.pause(plot_time)
    if save_plots:
        plt.savefig(save_dir + f'{layer}-node_{node_no}-{type}-lineplot.jpg')
Exemplo n.º 3
0
def create_factory(url):
    file_info = utils.get_file_info(url)
    f_size = file_info.get('file_size')
    f_name = file_info.get('file_name')
    work_size = utils.get_work_size(f_size)

    res = db.init_factory(url, f_name, f_size, work_size)
    print('[INTERFACE CREATE FACTORY] done.')
    return res
Exemplo n.º 4
0
    def updateLocalPath(self, newCwd=None):
        if newCwd is not None:
            if not os.path.isdir(newCwd):
                return
            self.cwd = newCwd
        self.pathEditSetText(self.cwd)

        self.files.clear()

        self.completeWordList = []

        # back to parent dir
        if self.cwd != '/':
            item = QTreeWidgetItem()
            icon = QIcon('icons/folder.png')
            item.setIcon(0, icon)
            item.setText(0, '..')
            for i in range(1, 4):
                item.setText(i, '')
            self.addItem(item)

        for f in os.listdir(self.cwd):
            # hidden files
            if f.startswith('.'):
                continue

            path = os.path.join(self.cwd, f)
            info = utils.get_file_info(path)

            if info.mode.startswith('d'):
                self.completeWordList.append(path)
                icon = QIcon('icons/folder.png')
            else:
                icon = QIcon('icons/file.png')

            item = QTreeWidgetItem()
            item.setIcon(0, icon)
            item.setText(0, info.filename)
            item.setText(1, info.size)
            item.setText(2, info.mode)
            item.setText(3, info.date)
            self.addItem(item)

        self.completerModel.setStringList(self.completeWordList)
Exemplo n.º 5
0
def generate_design(save_folder, hab_path, metrics, bins, mask_path, nsp):

    # make results folder to save output
    save_path = 'results/{}'.format(save_folder)
    if not os.path.exists(save_path):
        os.mkdir(save_path)

    # get geo info and habitat map from tif file
    habmap, n_bins, res, geo_t, prj_info = get_file_info(hab_path)

    if mask_path is not None:
        mask = extract_raster(mask_path)
    else:
        mask = np.ones((habmap.shape[0], habmap.shape[1]))

    metric_list = [habmap]
    bins_list = [n_bins]

    for i in range(len(metrics)):
        metric = extract_raster(metrics[i])
        metric_list.append(metric)
        bins_list.append(int(bins[i]))

    binned_metrics, combo_df, bin_breaks = bin_metrics(metric_list, mask,
                                                       bins_list)
    all_layers, id_df, s_opt = generate_all_layers(binned_metrics, mask,
                                                   combo_df, nsp)
    id_im, unique_ids = generate_id_im(all_layers, id_df)
    id_mix, id_df = generate_id_list(unique_ids, s_opt, nsp, id_df)

    print(id_df.head())

    # generate design
    x_unif, y_unif = generate_uniform_design(id_mix, id_im)

    # plot design in pop up
    plot_uniform(id_im, mask, x_unif, y_unif)

    # save results to csv
    save_uniform(x_unif, y_unif, id_mix, id_df, id_im, prj_info, geo_t,
                 save_path)

    return
def generate_design(save_folder, mask_path, nsp):

    # make results folder to save output
    save_path = 'results/{}'.format(save_folder)
    if not os.path.exists(save_path):
        os.mkdir(save_path)
    print('Results will be saved to {}'.format(save_path))

    # get geo info and mask from tif file
    mask, n_bins, res, geo_t, prj_info = get_file_info(mask_path)

    # generate design
    x_strat, y_strat = generate_stratified_design(mask, nsp)

    # plot design in pop up (please close plot to continue)
    plot_stratified(mask, x_strat, y_strat)

    # save results to csv
    save_stratified(x_strat, y_strat, prj_info, geo_t, save_path)
    return
Exemplo n.º 7
0
def generate_design(save_folder, original_mask_path, csv_path, radius):

    # make results folder to save output
    save_path = 'results/{}'.format(save_folder)
    if not os.path.exists(save_path):
        os.mkdir(save_path)

    savefiles = np.load(npz_path)
    ID_im = savefiles['ID_im']
    metrics = savefiles['immetrics']
    binned_metrics = savefiles['binned_metrics']
    site_df = pd.read_csv(csv_path)

    # get geo info and mask from path
    original_mask, nbins, res, GeoT, auth_code = get_file_info(
        original_mask_path)
    updated_mask = update_mask(site_df, original_mask, radius, res)
    sampled_df, nsp, id_mix_unsampled, save_IDs, unique_IDs, nsampled = get_sampling_info(
        csv_path)

    store_masks = store_layers(ID_im, updated_mask, unique_IDs)

    # generate design
    x_adpt, y_adpt = update_uniform_design(sampled_df, id_mix_unsampled,
                                           store_masks)

    # plot design in pop up
    plot_design(updated_mask, x_adpt, y_adpt)

    # save results to csv
    save_uniform(x_adpt,
                 y_adpt,
                 GeoT,
                 auth_code,
                 save_path,
                 nsampled=0,
                 updated='')

    return
def generate_design(save_folder, updated_mask_path, csv_path):

    # make results folder to save output
    save_path = 'results/{}'.format(save_folder)
    if not os.path.exists(save_path):
        os.mkdir(save_path)
    print('Results will be saved to {}'.format(save_path))

    # get geo info and mask from path
    updated_mask, n_bins, res, geo_t, prj_info = get_file_info(
        updated_mask_path)
    sampled_csv = pd.read_csv(csv_path)

    # generate design
    x_adpt, y_adpt = update_stratified_design(updated_mask, sampled_csv)

    # plot design in pop up
    plot_adapted_stratified(updated_mask, x_adpt, y_adpt, sampled_csv)

    # save results to csv
    save_stratified(x_adpt, y_adpt, prj_info, geo_t, save_path, sampled_csv)
    return
Exemplo n.º 9
0
def inline_buttons_handler(bot, update):
    from app import app, db

    query = update.callback_query
    chat_id = query.message.chat_id

    logger.debug("Got an inline button action: %s" % query.data)
    bot.send_chat_action(chat_id=chat_id, action=telegram.ChatAction.TYPING)
    # Try to get params
    try:
        params = json.loads(query.data)
        action = params.get("action")
        userfile_id = int(params.get("uf"))
    except Exception as e:
        logger.error(e)
        bot.send_message(
            chat_id=chat_id,
            text="\n".join(
                [
                    "Упс! Что-то пошло не так 😱",
                    "Передайте это администратору, чтобы он все исправил:",
                    "Query data: %s" % query.data,
                    "Exception: %s" % e,
                ]
            ),
        )
        raise

    # Try to get info about file from db
    file_info = get_file_info(bot, userfile_id)
    if action in ACTIONS_MAPPING:
        outfile = os.path.join(
            app.config["PROCESSED_DIR"],
            "%s %s %s.zip"
            % (
                remove_extension(file_info["filename"]),
                file_info["userfile_id"],
                action,
            ),
        )
        bot.send_message(text="Сейчас посмотрю...⏳", chat_id=chat_id)
        try:
            extract_file(bot, chat_id, file_info)
            statuses = ACTIONS_MAPPING[action](file_info["extract_path"])

            if any(statuses.values()):
                zipdir(file_info["extract_path"], outfile)
                bot.send_message(chat_id=chat_id, text="Готово!🚀")
                bot.send_document(
                    chat_id=chat_id,
                    document=open(outfile, "rb"),
                    filename=os.path.basename(outfile),
                    reply_to_message_id=file_info["message_id"],
                )
                if not all(statuses.values()):
                    message = "⚠️ Следующие файлы не удалось обработать: ⚠️\n"
                    for file, status in statuses.items():
                        if not status:
                            file_path = os.path.relpath(
                                file, file_info["extract_path"]
                            )
                            # Telegram has limit for message length, so we
                            # split the message in case it is too long (> 4096)
                            if len(message) + len(file_path) + 10 < 4096:
                                message += f"\n ❌ {file_path}"
                            else:
                                bot.send_message(chat_id=chat_id, text=message)
                                message = f" ❌ {file_path}"
                    bot.send_message(chat_id=chat_id, text=message)
            else:
                bot.send_message(
                    chat_id=chat_id,
                    text="Не удалось обработать данные. Проверьте, что файлы предоставлены в нужном формате.",
                )
        except Exception as e:
            logger.error(e)
            bot.send_message(
                chat_id=chat_id,
                text="\n".join(
                    [
                        "Упс! Что-то пошло не так 😱",
                        "Передайте это администратору, чтобы он все исправил:",
                        "Query data: %s" % query.data,
                        "Exception: %s" % e,
                    ]
                ),
            )
            raise
    else:
        bot.send_message(
            chat_id=chat_id,
            text="Данная команда в процессе реализации и пока не доступна 😞",
        )
    return "OK"
Exemplo n.º 10
0
def draw_distributions(filename,
                       save_dir,
                       type='mean',
                       node_no=0,
                       save_plots=False,
                       plot_time=0.5):
    file_desc = utils.get_file_info(filename)
    layer = file_desc['layer_name']
    batch_size = file_desc['batch_size']
    freq = file_desc['recording_frequency_per_epoch']
    means, stds = utils.load_mean_std_from_file(filename)
    frames = []
    if type == 'both':
        fig = plt.figure()
        ax = fig.add_subplot(111)

        for i in range(len(means)):
            mean = np.mean(means[i].reshape((batch_size, -1))[:, node_no])
            std = np.sum(
                np.square(stds[i].reshape(
                    (batch_size, -1))[:, node_no])) / batch_size
            sns.distplot(np.random.normal(loc=mean, scale=std, size=1000),
                         ax=ax,
                         hist=False)
            ax.axvline(mean, color='r', linestyle='-')
            iteration = i % freq
            epoch = i // freq
            plt.title(
                f'Distribution for {layer} node {node_no}: Epoch-{epoch} Iteration-{iteration}'
            )
            plt.xlabel(f'Value')
            plt.ylabel('Density')
            fig.canvas.draw()
            if save_plots:
                frame = np.array(fig.canvas.renderer.buffer_rgba())
                frames.append(frame)
            plt.pause(0.1)
            ax.clear()
        plt.close()
    else:
        data = means if type == 'mean' else stds
        fig = plt.figure()
        ax = fig.add_subplot(111)

        for i in range(len(data)):
            sample = data[i].reshape((batch_size, -1))
            sample = sample[:, node_no]
            sns.distplot(sample, norm_hist=True, ax=ax)
            ax.axvline(np.mean(sample), color='r', linestyle='-')
            iteration = i % freq
            epoch = i // freq
            plt.title(
                f'Distribution for {layer} node {node_no}: Epoch-{epoch} Iteration-{iteration}'
            )
            plt.xlabel(f'Value of {type}')
            plt.ylabel('Density')
            fig.canvas.draw()
            if save_plots:
                frame = np.array(fig.canvas.renderer.buffer_rgba())
                frames.append(frame)
            plt.pause(0.1)
            ax.clear()
        plt.close()

    if save_plots:
        imageio.mimsave(save_dir +
                        f'{layer}-node_{node_no}-{type}-distplot.gif',
                        frames,
                        fps=1 / plot_time)