def main(): with open("15/input.txt", encoding="UTF-8") as file: content = file.read() matrix = get_matrix(content) searcher = Searcher(matrix) path = searcher.get_shortest_path() print(path)
def __init__(self, p, q, matrix_name, dataset): ''' Function init. - Param(s): p, q : neighborhood parametres matrix_name : name of the similarity matrix to use dataset : a sequence list created by function gen_data in utils.py ''' self.p = p self.q = q self.lettre_list = 'ARNDCQEGHILKMFPSTWYVBZX*' self.matrix = utils.get_matrix(matrix_name) self.dataset = dataset self.debug = False
def textrank_keywords(processed_sentences, window_size, top_num): """ Inspired by pagerank, textrank considers each word as a node, give the weight to each edge by calculating word window pairs. And rank words by their score. :param processed_sentences: processed sentences, at least remove stopwords. :param window_size: the number of words following a word. :param top_num: the number of top words. :return: a list of Top top_num words (index 0) with their scores (index 1). """ vocab = get_vocab(processed_sentences) token_pairs = get_token_pairs(window_size, processed_sentences) # Get normalized matrix g = get_matrix(vocab, token_pairs) # Initionlization for weight(pagerank value) pr = np.array([1] * len(vocab)) d = 0.85 # damping coefficient, usually is .85 min_diff = 1e-5 # convergence threshold steps = 10 node_weight = None # save keywords and its weight # Iteration previous_pr = 0 for epoch in range(steps): pr = (1 - d) + d * np.dot(g, pr) if abs(previous_pr - sum(pr)) < min_diff: break else: previous_pr = sum(pr) # Get weight for each node node_weight = dict() for word, index in vocab.items(): node_weight[word] = pr[index] # Print Top Keywords node_weight = OrderedDict( sorted(node_weight.items(), key=lambda t: t[1], reverse=True)) keywords = [] for i, (key, value) in enumerate(node_weight.items()): keywords.append((key, value)) if i > (top_num - 2): break return keywords
def convert_global_transform_to_actor_frame(self, actor=None, transform=None): if(actor == None or transform == None): print("Input is None. Please Check") return None else: actor_to_world_transform = actor.get_transform() R_actor_to_world = get_matrix(actor_to_world_transform) R_world_to_actor = np.linalg.inv(R_actor_to_world) transform_coords = np.zeros((4, 1)) transform_coords[0] = transform.location.x transform_coords[1] = transform.location.y transform_coords[2] = transform.location.z transform_coords[3] = 1 transform_position_as_seen_from_actor = np.dot(R_world_to_actor, transform_coords) return transform_position_as_seen_from_actor
spawn_point.location.z = spawn_point.location.z + 2 vehicle_front_2, vehicle_front_2_id = carla_handler_1.spawn_vehicle(spawn_point=spawn_point) spawn_point = filtered_waypoints[50].transform spawn_point.location.z = spawn_point.location.z + 2 vehicle_back, vehicle_back_id = carla_handler_1.spawn_vehicle(spawn_point=spawn_point) spawn_point = filtered_waypoints[0].transform spawn_point.location.z = spawn_point.location.z + 2 vehicle_back_2, vehicle_back_2_id = carla_handler_1.spawn_vehicle(spawn_point=spawn_point) time.sleep(3) # Get rotation matrix from : ego vehicle location and rotation vectors (i.e ego vehicle transform) ego_vehicle_to_world_transform = ego_vehicle.get_transform() R_ego_vehicle_to_world = get_matrix(ego_vehicle_to_world_transform) R_world_to_ego_vehicle = np.linalg.inv(R_ego_vehicle_to_world) while(True): # Get all actors all_actors = carla_handler_1.world.get_actors() vehicle_in_front = None vehicle_in_rear = None actors_in_current_lane = [] actors_in_other_lane = [] for actor in all_actors.filter('vehicle.*'): if(actor.id ~= ego_vehicle.id): actor_nearest_waypoint = carla_handler_1.world_map.get_waypoint(actor.get_location(), project_to_road=True)
MATCH_DATA, CORNER_DATA = get_homographies_contour( FRAME, REF_IMAGES, MATCH_DATA, CORNER_DATA) if cv2.waitKey(1) & 0xFF == ord("q"): break if MATCH_DATA[0] is not None and MATCH_DATA[1] is not None: HOMOGRAPHY1 = MATCH_DATA[0] HOMOGRAPHY2 = MATCH_DATA[1] CORNER1 = CORNER_DATA[0] CORNER2 = CORNER_DATA[1] PROJ_MAT1, R, T = get_matrix(CAM_MAT, HOMOGRAPHY1) DIST = calculate_dist_corners(CORNER1, CORNER2) DIST_X = DIST[0] DIST_Y = DIST[1] STEP_X = DIST_X / 40 STEP_Y = DIST_Y / 40 if abs(REACHED_X) >= abs(DIST_X) or abs(REACHED_Y) >= abs(DIST_Y): REACHED_X = 0 REACHED_Y = 0 else: REACHED_X += STEP_X REACHED_Y += STEP_Y
) parser_grn.add_argument( '--gene-attribute', type=str, default='Gene', dest="gene_attribute", help= 'The name of the row attribute that specifies the gene symbols in the loom file.' ) args = parser_grn.parse_args() # Do stuff ex_matrix_df = utils.get_matrix(loom_file_path=args.expression_mtx_fname.name, gene_attribute=args.gene_attribute, cell_id_attribute=args.cell_id_attribute) signatures = utils.read_signatures_from_tsv_dir( dpath=args.signatures_fname, noweights=False, weight_threshold=args.min_regulon_gene_occurrence, min_genes=args.min_genes) if len(signatures) == 0: raise Exception( f"No signature passing filtering. Please consider to adapt 'min_genes_regulon = {args.min_genes_regulon}' and 'min_regulon_gene_occurrence = {args.min_regulon_gene_occurrence}' (see params.sc.scenic.aucell). Make sure these settings are smaller than numRuns (params.sc.scenic)." ) auc_threshold = args.auc_threshold if args.percentile_threshold is not None:
RET, FRAME = VID_FEED.read() if not RET: print("Unable to capture video") sys.exit() if DRAW_HARRIS: FRAME = draw_harris_kps(FRAME) # MATCH_DATA = find_homographies(REF_DSC, FRAME) MATCH_DATA, _ = get_homographies_contour(FRAME, REF_IMAGES, MATCH_DATA, None) for ind, homography in enumerate(MATCH_DATA): # homography = match_tuple[0] if homography is not None: projection_matrix, R, T = get_matrix(CAM_PARAMS, homography) print(R, T) # FRAME = draw_corners(FRAME, homography) FRAME = render(FRAME, OBJ, projection_matrix, REF_IMAGES[ind], False) if RECTANGLE: FRAME, _ = draw_rectangle(homography, REF_IMAGES[ind], FRAME) cv2.imshow('frame', FRAME) if cv2.waitKey(1) & 0xFF == ord('q'): break VID_FEED.release() cv2.destroyAllWindows()
surfs.append(xyz[:, :, 0, :]) surfs.append(xyz[:, :, -1, :]) surfs.append(xyz[:, 0, :, :]) surfs.append(xyz[:, -1, :, :]) surfs.append(xyz[ 0, :, :, :]) surfs.append(xyz[-1, :, :, :]) tecwrite.write_surf_multi('output/surf.dat', surfs) writeBDF('output/mesh.bdf', nodes, bars+1) mat, Kmat = get_matrix(EA, nodes, bars, constrained) rhs = numpy.zeros(mat.shape[0]) rhs[:3*len(forces)] = forces.flatten() sol = solve(mat, rhs)[:3*len(forces)] sol_surf = sol.reshape(xyz.shape) xyz += sol_surf surfs = [] surfs.append(xyz[:, :, 0, :]) surfs.append(xyz[:, :, -1, :]) surfs.append(xyz[:, 0, :, :]) surfs.append(xyz[:, -1, :, :])