Exemplo n.º 1
0
def check_preloaded_paths_correct(preloaded_paths): 
    #ensure that if we have only one detector, that the network was trained with both types of roof
    #if we have more than one detector, ensure that each was trained on only one type of roof
    metal_network = None 
    thatch_network = None
    for i, path in enumerate(preloaded_paths):

        metal_num = (int(float(utils.get_param_value_from_filename(path, 'metal'))))
        thatch_num = (int(float(utils.get_param_value_from_filename(path,'thatch'))))
        nonroof_num = (int(float(utils.get_param_value_from_filename(path,'nonroof'))))

        assert nonroof_num > 0
        if len(preloaded_paths) == 1:
            assert metal_num > 0 and thatch_num > 0  
            metal_network = path
            thatch_network = path
        elif len(preloaded_paths) == 2:
            if (metal_num == 0 and thatch_num > 0):
                thatch_network = path
            if (metal_num > 0 and thatch_num == 0):
                metal_network = path
        else:
            raise ValueError('You passed in too many network weights to the pipeline.')

    #if we passed in two neural networks, ensure that we actually 
    #have one for metal and one for thatch    
    assert metal_network is not None and thatch_network is not None
    return metal_network, thatch_network
def setup_params(parameters, pipe_fname, method=None, decision='decideMean'):
    '''
    Get parameters for the pipeline and the components of the pipeline:
    the neural network(s) and the viola detector(s)
    '''
    preloaded_paths = parameters['preloaded_path'].split() #there can be more than one network, separated by space
    single_detector_boolean = False if len(preloaded_paths) == 2 else True

    #PIPE PARAMS: the grouping for each roof class parameter
    pipe_params = dict() 
    if 'metal_groupThres' in parameters:
        pipe_params['metal_groupThres'] = parameters['metal_groupThres']
    if 'thatch_groupThres' in parameters:
        pipe_params['thatch_groupThres'] = parameters['thatch_groupThres']

    neural_ensemble = Ensemble(preloaded_paths, scoring_strategy=decision, method=method)
    from nolearn.lasagne.visualize import plot_conv_weights
    #plot_conv_weights(neural_ensemble.neural_nets['metal'][0].net.layers_['conv1'], figsize=(4,4))
    #plt.show()
    assert neural_ensemble is not None

    if method=='viola':
        #VIOLA PARAMS
        viola_params = dict()
        viola_data = neural_ensemble.data_path
        #a little messy, but we no longer call viola_data that, we call it data_path

        combo_fname = 'combo{0}'.format(int(utils.get_param_value_from_filename(viola_data,'combo')))
        viola_params['detector_names'] = viola_detector_helpers.get_detectors(combo_fname)

        #get other non-default params
        possible_parameters = ['min_neighbors','scale', 'group', 'removeOff', 'rotate', 'mergeFalsePos'] 
        for param in possible_parameters:
            if param in viola_data:
                viola_params[param]= utils.get_param_value_from_filename(viola_data, param)
        detector_params = viola_params

    elif method=='slide': #sliding window
        detector_params = dict()
        '''WE KNOW WHAT THESE PARAMS ARE, SO USE THEM DIRECTLY
        for param in ['scale', 'minSize', 'windowSize', 'stepSize']:
            if param == 'scale':
                detector_params[param] = float(parameters[param])
            elif param == 'stepSize':
                detector_params[param] = int(float(parameters[param]))
            else:
                detector_params[param] = (int(float(parameters[param])),int(float(parameters[param])))
        '''
        detector_params['scale'] = 1.3
        detector_params['minSize'] = (50,50)
        detector_params['windowSize'] = (15,15)
        detector_params['stepSize'] = 4

    else:
        print 'Unknown method of detection {}'.format(method)
        sys.exit(-1)
    return neural_ensemble, detector_params, pipe_params, single_detector_boolean
Exemplo n.º 3
0
    def process_paths_get_nets(self):
        self.neural_nets = defaultdict(list)
        self.num_nets = defaultdict(int)

        for roof_type, net_paths in self.net_paths.iteritems():
            for p, path in enumerate(net_paths):
                self.num_nets[roof_type] += 1
                if 'batch' in path:
                    start = len('batch') + path.find('batch')
                    end = path[start:].find('.')
                    starting_batch = int(float(path[start:-len('.pickle')]))
                else:
                    starting_batch = 0
                print 'Starting batch is:{}'.format(starting_batch)
                neural_params = dict()  #one set of parameters per roof type
                neural_param_num = (utils.get_param_value_from_filename(
                    path, 'params'))
                if neural_param_num is None:
                    neural_param_num = (utils.get_param_value_from_filename(
                        path, 'violaNet'))

                #small hack to pick up right param file number in two cases where I foolishly didn't print it out in the name....
                if neural_param_num is None:
                    if len(net_paths) == 1:
                        neural_param_num = 20005 if roof_type == 'thatch' else 20006
                    elif len(net_paths) > 1:
                        neural_param_num = 20003 if roof_type == 'thatch' else 20004

                neural_params_fname = 'params{0}.csv'.format(
                    int(neural_param_num))

                params_path = '{0}{1}'.format(
                    utils.get_path(params=True, neural=True),
                    neural_params_fname)
                neural_params = neural_network.get_neural_training_params_from_file(
                    params_path)

                if 'viola_data' in neural_params.keys():
                    self.data_path = neural_params['viola_data']
                elif 'data_folder' in neural_params.keys():
                    self.data_path = neural_params['data_folder']

                neural_params['preloaded_path'] = path
                neural_params['net_name'] = path[:-len('.pickle')]
                neural_params['roof_type'] = roof_type
                #for each net in the ensemble, we start at a different data batch, that way we get a variety of data for training
                current_net = Experiment(pipeline=True,
                                         method=self.method,
                                         starting_batch=starting_batch,
                                         **neural_params)
                self.neural_nets[roof_type].append(current_net)
Exemplo n.º 4
0
    def process_preloaded_paths(self, preloaded_paths): 
        #ensure that if we have only one detector, that the network was trained with both types of roof
        #if we have more than one detector, ensure that each was trained on only one type of roof
        self.net_paths = defaultdict(list)
        
        for path in preloaded_paths:
            metal_num = (int(float(utils.get_param_value_from_filename(path, 'metal'))))
            thatch_num = (int(float(utils.get_param_value_from_filename(path,'thatch'))))
            nonroof_num = (int(float(utils.get_param_value_from_filename(path,'nonroof'))))

            assert nonroof_num > 0
            if (metal_num == 0 and thatch_num > 0):
                self.net_paths['thatch'].append(path)
            if (metal_num > 0 and thatch_num == 0):
                self.net_paths['metal'].append(path)
Exemplo n.º 5
0
    def process_preloaded_paths(self, preloaded_paths):
        #ensure that if we have only one detector, that the network was trained with both types of roof
        #if we have more than one detector, ensure that each was trained on only one type of roof
        self.net_paths = defaultdict(list)

        for path in preloaded_paths:
            metal_num = (int(
                float(utils.get_param_value_from_filename(path, 'metal'))))
            thatch_num = (int(
                float(utils.get_param_value_from_filename(path, 'thatch'))))
            nonroof_num = (int(
                float(utils.get_param_value_from_filename(path, 'nonroof'))))

            assert nonroof_num > 0
            if (metal_num == 0 and thatch_num > 0):
                self.net_paths['thatch'].append(path)
            if (metal_num > 0 and thatch_num == 0):
                self.net_paths['metal'].append(path)
Exemplo n.º 6
0
    def process_paths_get_nets(self):
        self.neural_nets = defaultdict(list)
        self.num_nets = defaultdict(int)
        
        for roof_type, net_paths in self.net_paths.iteritems():
            for p, path in enumerate(net_paths):
                self.num_nets[roof_type] += 1
                if 'batch' in path:
                    start = len('batch')+path.find('batch')
                    end = path[start:].find('.')
                    starting_batch = int(float(path[start:-len('.pickle')]))
                else:
                    starting_batch = 0
                print 'Starting batch is:{}'.format(starting_batch)
                neural_params = dict() #one set of parameters per roof type
                neural_param_num = (utils.get_param_value_from_filename(path, 'params'))
                if neural_param_num is None:
                    neural_param_num = (utils.get_param_value_from_filename(path, 'violaNet'))

                #small hack to pick up right param file number in two cases where I foolishly didn't print it out in the name....
                if neural_param_num is None:
                    if len(net_paths) == 1:
                        neural_param_num = 20005 if roof_type=='thatch' else 20006
                    elif len(net_paths) > 1:
                        neural_param_num = 20003 if roof_type=='thatch' else 20004

                neural_params_fname = 'params{0}.csv'.format(int(neural_param_num)) 

                params_path = '{0}{1}'.format(utils.get_path(params=True, neural=True), neural_params_fname)
                neural_params = neural_network.get_neural_training_params_from_file(params_path)

                if 'viola_data' in neural_params.keys():
                    self.data_path = neural_params['viola_data']
                elif 'data_folder' in neural_params.keys():
                    self.data_path = neural_params['data_folder']

                neural_params['preloaded_path'] = path
                neural_params['net_name'] = path[:-len('.pickle')] 
                neural_params['roof_type'] = roof_type
                #for each net in the ensemble, we start at a different data batch, that way we get a variety of data for training
                current_net = Experiment(pipeline=True, method=self.method, starting_batch=starting_batch, **neural_params) 
                self.neural_nets[roof_type].append(current_net) 
Exemplo n.º 7
0
def setup_neural_viola_params(parameters, pipe_fname):
    '''
    Get parameters for the pipeline and the components of the pipeline:
    the neural network(s) and the viola detector(s)
    '''
    preloaded_paths = parameters['preloaded_path'].split() #there can be more than one network, separated by space
    single_detector_boolean = False if len(preloaded_paths) == 2 else True

    #PIPE PARAMS:the step size (probably not needed) and the neural nets to be used
    metal_net, thatch_net = check_preloaded_paths_correct(preloaded_paths)
    pipe_params = dict() 
    preloaded_paths_dict = {'metal': metal_net, 'thatch': thatch_net}
    pipe_params = {'step_size':parameters['step_size'] ,'preloaded_paths': preloaded_paths_dict}

    neural_params = dict() #one set of parameters per roof type
    for roof_type, path in preloaded_paths_dict.iteritems():
        #NEURAL parameters: there could be two neural networks trained and used
        neural_param_num = int(utils.get_param_value_from_filename(path, 'params'))
        neural_params_fname = 'params{0}.csv'.format(neural_param_num) 

        params_path = '{0}{1}'.format(utils.get_path(params=True, neural=True), neural_params_fname)
        neural_params[roof_type] = neural_network.get_neural_training_params_from_file(params_path)
        neural_params[roof_type]['preloaded_path'] = path
        neural_params[roof_type]['net_name'] = path[:-len('.pickle')] 
        if single_detector_boolean:
            neural_params[roof_type]['roof_type'] = 'Both'

    #VIOLA PARAMS
    viola_params = dict()
    viola_data = neural_params['metal']['viola_data']
    combo_fname = 'combo{0}'.format(int(utils.get_param_value_from_filename(viola_data,'combo')))
    viola_params['detector_names'] = viola_detector_helpers.get_detectors(combo_fname)

    #get other non-default params
    possible_parameters = ['min_neighbors','scale', 'group', 'removeOff', 'rotate', 'mergeFalsePos'] 
    for param in possible_parameters:
        if param in viola_data:
            viola_params[param]= utils.get_param_value_from_filename(viola_data, param)

    return neural_params, viola_params, pipe_params, single_detector_boolean
Exemplo n.º 8
0
                if 'viola' in score[0]:
                    viola_num += 1
                    if viola_num > 10:
                        continue
                    if prev_viola_auc == score[1]:
                        prev_viola_auc = score[1]
                        continue
                    prev_viola_auc = score[1]
                elif 'slide' in score[0]:
                    slide_num += 1
                    if slide_num > 10:
                        continue
                    if prev_slide_auc == score[1]:
                        prev_slide_auc = score[1]
                        continue
                    prev_slide_auc = score[1]
                end_name = score[0].find('_')
                name = score[0][:end_name]
                group_thres = float(
                    utils.get_param_value_from_filename(score[0],
                                                        'group',
                                                        separator='_'))
                log.append(
                    '{0}&\({7}\)&\({1}\)&\({2}\)&\({3:.3f}\)&\({4:.3f}\)&\({5:.3f}\)&\({6:.3f}\)\\\\'
                    .format(name, score[1], score[2], score[3], score[4],
                            score[5], score[6], group_thres))
            output = '\n'.join(log)
            with open('results/{}_{}.txt'.format(roof_type, method), 'w') as f:
                f.write(output)
            print output
Exemplo n.º 9
0
            log.append('{}&{}&{}&{}&{}&{}&{}\\\\'.format('Detector','Group Threshold' , 'Auc', 'Detections', 'Recall','Precision','F1','Time (s.)'))
            for score in scores[roof_type][method]:
                if 'viola' in score[0]:
                    viola_num += 1
                    if viola_num > 10:
                        continue
                    if prev_viola_auc == score[1]:
                        prev_viola_auc = score[1]
                        continue
                    prev_viola_auc = score[1]
                elif 'slide' in score[0]:
                    slide_num += 1
                    if slide_num > 10:
                        continue
                    if prev_slide_auc == score[1]:
                        prev_slide_auc = score[1]
                        continue
                    prev_slide_auc = score[1]
                end_name = score[0].find('_') 
                name = score[0][:end_name]
                group_thres = float(utils.get_param_value_from_filename(score[0], 'group', separator='_'))
                log.append('{0}&\({7}\)&\({1}\)&\({2}\)&\({3:.3f}\)&\({4:.3f}\)&\({5:.3f}\)&\({6:.3f}\)\\\\'.format(name,  score[1], 
                                                                                score[2], score[3], score[4], score[5], score[6], group_thres))
            output = '\n'.join(log)
            with open('results/{}_{}.txt'.format(roof_type, method), 'w') as f:
                f.write(output)
            print output



Exemplo n.º 10
0
def setup_params(parameters, pipe_fname, method=None, decision='decideMean'):
    '''
    Get parameters for the pipeline and the components of the pipeline:
    the neural network(s) and the viola detector(s)
    '''
    preloaded_paths = parameters['preloaded_path'].split(
    )  #there can be more than one network, separated by space
    single_detector_boolean = False if len(preloaded_paths) == 2 else True

    #PIPE PARAMS: the grouping for each roof class parameter
    pipe_params = dict()
    if 'metal_groupThres' in parameters:
        pipe_params['metal_groupThres'] = parameters['metal_groupThres']
    if 'thatch_groupThres' in parameters:
        pipe_params['thatch_groupThres'] = parameters['thatch_groupThres']

    neural_ensemble = Ensemble(preloaded_paths,
                               scoring_strategy=decision,
                               method=method)
    from nolearn.lasagne.visualize import plot_conv_weights
    #plot_conv_weights(neural_ensemble.neural_nets['metal'][0].net.layers_['conv1'], figsize=(4,4))
    #plt.show()
    assert neural_ensemble is not None

    if method == 'viola':
        #VIOLA PARAMS
        viola_params = dict()
        viola_data = neural_ensemble.data_path
        #a little messy, but we no longer call viola_data that, we call it data_path

        combo_fname = 'combo{0}'.format(
            int(utils.get_param_value_from_filename(viola_data, 'combo')))
        viola_params['detector_names'] = viola_detector_helpers.get_detectors(
            combo_fname)

        #get other non-default params
        possible_parameters = [
            'min_neighbors', 'scale', 'group', 'removeOff', 'rotate',
            'mergeFalsePos'
        ]
        for param in possible_parameters:
            if param in viola_data:
                viola_params[param] = utils.get_param_value_from_filename(
                    viola_data, param)
        detector_params = viola_params

    elif method == 'slide':  #sliding window
        detector_params = dict()
        '''WE KNOW WHAT THESE PARAMS ARE, SO USE THEM DIRECTLY
        for param in ['scale', 'minSize', 'windowSize', 'stepSize']:
            if param == 'scale':
                detector_params[param] = float(parameters[param])
            elif param == 'stepSize':
                detector_params[param] = int(float(parameters[param]))
            else:
                detector_params[param] = (int(float(parameters[param])),int(float(parameters[param])))
        '''
        detector_params['scale'] = 1.3
        detector_params['minSize'] = (50, 50)
        detector_params['windowSize'] = (15, 15)
        detector_params['stepSize'] = 4

    else:
        print 'Unknown method of detection {}'.format(method)
        sys.exit(-1)
    return neural_ensemble, detector_params, pipe_params, single_detector_boolean