Exemplo n.º 1
0
def view2d(dataset_lo, dataset_cls_lo, args):
    fig = plt.figure()
    #ax = fig.add_subplot(111, projection='3d')
    ax = plt.gca()
    #ax.scatter(xs, ys, zs, c=c, marker=m)
    n_data = len(dataset_lo)
    Ly_mx = []
    ones = torch.ones(3, 3).triu(diagonal=1)
    for i, data in enumerate(dataset_lo):
        #n_nodes = len(data.nodes())
        L = utils.graph_to_lap(data)
        #Ly_mx.append(L[torch.triu(torch.ones(n_nodes, n_nodes), diagonal=1) > 0])
        L = L[ones > 0][:2]  #.view(-1)
        L = torch.sort(L, -1)[0]  #torch.topk(L,k=2,dim=-1)[0]
        Ly_mx.append(L)

    cls2c = {0: 'r', 1: 'b', 2: 'g', 3: 'c', 4: 'm', 5: 'k', 6: 'y'}
    cls2label = {
        0: 'block2',
        1: 'rand_reg',
        2: 'barabasi',
        3: 'block3',
        4: 'block4',
        5: 'k',
        6: 'y'
    }
    c_l = []
    for i in range(n_data):
        c_l.append(cls2c[dataset_cls_lo[i]])

    ar = torch.stack(Ly_mx)
    #pdb.set_trace()
    #ar = (ar/torch.norm(ar, 2, dim=-1, keepdim=True) ).t().numpy() #.transpose() #.t().numpy()
    ar = (ar).t().numpy()  #.transpose() #.t().numpy()
    ax.set_ylim(-7, ar[0].max())

    #
    #ax.set_zlim3d(-15, ar[1].max())
    #ax.set_xlim3d(-20, ar[2].max())

    ax.set_xlim(-25, ar[1].max())

    range_ar = np.array(list(range(n_data)))
    #ax.scatter(ar[1], ar[0], c=c_l)
    for i in range(5):
        #if i == 4:
        #    continue
        idx = range_ar[dataset_cls_lo == i]
        #pdb.set_trace()
        ax.scatter(ar[0][idx], ar[1][idx], c=cls2c[i],
                   label=cls2label[i])  #, c=c, marker=m)

    #'''
    ax.legend()
    path = 'data/projection_2d{}.jpg'.format(args.data_dim)
    fig.savefig(path)
    print('plot saved to {}'.format(path))
Exemplo n.º 2
0
def sketch_graph(args):
    data_dim = 20
    lo_dim = 5

    g1 = utils.create_graph(data_dim, 'random_regular')

    #args.n_epochs = 300 <--parameters like this can be set here or in command line
    args.Lx = utils.graph_to_lap(g1)
    args.m = len(args.Lx)
    args.n = lo_dim
    # sketch graphs of lo_dim.
    # Returns optimization loss, transport plan P, and Laplacian of sketched graph
    loss, P, Ly = graph.graph_dist(args, plot=False)
    print('sketched graph Laplacian {}'.format(Ly))
    #can convert Ly to a networkx graph with utils.lap_to_graph(Ly)
    return loss, P, Ly
Exemplo n.º 3
0
def sketch_graph(graphs, lo_dim, args):
    '''
    Run graph sketching.
    Input: graphs: graphs to be dimension-reduced for..
    '''
    args.n = lo_dim
    lo_graphs = []
    args.n_epochs = 230
    for g in tqdm(graphs, desc='sketching'):
        args.Lx = utils.graph_to_lap(g)  #graph.graph_dist(args, plot=False)
        args.m = len(args.Lx)
        #sys.stdout.write(' ' +str(len(g.nodes())))
        #sys.stdout.write(str(args.m) +' ')
        loss, P, Ly = graph.graph_dist(args, plot=False)

        lo_graphs.append(utils.lap_to_graph(Ly))

    return lo_graphs
Exemplo n.º 4
0
def sketch_graph(graphs, dataset_cls, lo_dim, args):
    '''
    Run graph sketching.
    Input: graphs: graphs to be dimension-reduced for.
    '''
    args.n = lo_dim
    lo_graphs = []
    lo_cls = []
    args.n_epochs = 230 #250
    for i, g in enumerate(tqdm(graphs, desc='sketching')):
        args.Lx = utils.graph_to_lap(g) #graph.graph_dist(args, plot=False)        
        args.m = len(args.Lx)
        try:
            #rarely, 0.2% of time pytorch's eigenvalue finding doesn't converge
            loss, P, Ly = graph.graph_dist(args, plot=False)
        
        except RuntimeError as e:
            #    pdb.set_trace()
            print(e)
            continue
        lo_graphs.append(utils.lap_to_graph(Ly))
        lo_cls.append(dataset_cls[i])
    return lo_graphs, lo_cls
Exemplo n.º 5
0
def classify_st(dataset,
                queries,
                dataset_cls,
                target,
                args,
                dataset0=None,
                queries0=None):
    """
    classify graphs. Can be used to compare COPT, GOT.
    Input: dataset, queries: could be sketched or non-sketched.
    dataset0, queries0: original, non-sketched graphs.
    """

    if dataset0 is None:
        dataset0 = dataset
        queries0 = queries
    n_data = len(dataset)
    n_queries = len(queries)
    ot_cost = np.zeros((len(queries), len(dataset)))

    st_cost = np.zeros((len(queries), len(dataset)))

    Ly_mx = []
    Lx_mx = []
    data_graphs = []

    for i, data in enumerate(dataset):
        n_nodes = len(data.nodes())
        L = utils.graph_to_lap(data)
        #Ly_mx.append(L[torch.triu(torch.ones(n_nodes, n_nodes), diagonal=1) > 0])
        Ly_mx.append(L)

    #pdb.set_trace()
    for i, q in enumerate(tqdm(queries, desc='queries')):
        Lx = utils.graph_to_lap(q)
        args.Lx = Lx

        args.m = len(q.nodes())
        Lx_mx.append(args.Lx)
        n_repeat = 1  #1 works fine
        for j, data in enumerate(dataset):

            Ly = Ly_mx[j].clone()
            args.n = len(Ly)
            min_loss = 10000

            for _ in range(n_repeat):
                loss, P, Ly_ = graph.graph_dist(args,
                                                plot=False,
                                                Ly=Ly,
                                                take_ly_exp=False)
                if loss < min_loss:
                    min_loss = loss

            ot_cost[i][j] = min_loss
            try:
                x_reg, y_reg, (P_st, loss_st) = st.find_permutation(
                    Lx.cpu().numpy(),
                    Ly.cpu().numpy(),
                    args.st_it,
                    args.st_tau,
                    args.st_n_samples,
                    args.st_epochs,
                    args.st_lr,
                    loss_type='w',
                    alpha=0,
                    ones=True,
                    graphs=True)  #l2
            except Exception:
                print('Exception encountered during GOT')
                #pdb.set_trace()

            st_cost[i][j] = loss_st

    ##can also try median, or dataset_cls[np.argsort(ot_cost[-8],-1)[:10]], or  dataset_cls[np.argpartition(ot_cost[6],10)[:10]]
    ot_cost_ = torch.from_numpy(ot_cost)
    #for combined, can add dist here
    ot_cost_ranks = torch.argsort(ot_cost_, -1)[:, :args.n_per_cls]
    ones = torch.ones(100)  #args.n_per_cls*2 (n_cls*2)
    ot_cls = np.ones(n_queries)

    dataset_cls_t = torch.from_numpy(dataset_cls)

    for i in range(n_queries):  #for each cls
        cur_ranks = dataset_cls_t[ot_cost_ranks[i]]
        ranked = torch.zeros(100)  #n_cls*2
        ranked.scatter_add_(src=ones, index=cur_ranks, dim=-1)
        ot_cls[i] = torch.argmax(ranked).item()

    ot_cost_means = np.mean(ot_cost.reshape(n_queries,
                                            n_data // args.n_per_cls,
                                            args.n_per_cls),
                            axis=-1)
    ot_idx = np.argmin(ot_cost_means, axis=-1) * args.n_per_cls

    st_cost_means = np.mean(st_cost.reshape(n_queries,
                                            n_data // args.n_per_cls,
                                            args.n_per_cls),
                            axis=-1)
    st_idx = np.argmin(st_cost_means, axis=-1) * args.n_per_cls

    ot_cls1 = dataset_cls[ot_idx]

    st_cls = dataset_cls[st_idx]
    ot_acc, ot_acc1 = np.equal(ot_cls, target).sum() / len(target), np.equal(
        ot_cls1, target).sum() / len(target)
    st_acc = np.equal(st_cls, target).sum() / len(target)

    print('ot acc1 {} ot acc {} st acc {}'.format(ot_acc1, ot_acc, st_acc))

    return
Exemplo n.º 6
0
def perm_mi(args):
    '''
    Remove edges, permute, align, then measure MI.
    '''
    args.n_epochs = 1000
    params = {'n_blocks': 4}
    use_given_graph = False
    if use_given_graph:  #True:#False: #True:
        g = torch.load('mi_g_.pt')
    else:
        seed = 0 if args.fix_seed else None
        g = utils.create_graph(40, gtype='block', params=params, seed=seed)
        #torch.save(g, 'mi_g.pt')
    orig_cls = []
    for i in range(4):
        orig_cls.extend([i for _ in range(10)])
    orig_cls = np.array(orig_cls)
    Lg = utils.graph_to_lap(g)
    args.Lx = Lg.clone()
    args.m = len(Lg)

    #remove edges and permute
    n_remove = args.n_remove  #150
    rand_seed = 0 if args.fix_seed else None
    Lg_removed = utils.remove_edges(Lg, n_remove=n_remove, seed=rand_seed)
    Lg_perm, perm = utils.permute_nodes(Lg_removed.numpy(), seed=rand_seed)

    inv_perm = np.empty(args.m, perm.dtype)
    inv_perm[perm] = np.arange(args.m)

    ##Ly = torch.from_numpy(Lg_perm)
    Ly = torch.from_numpy(Lg_perm)  #Lg_removed.clone() #args.Lx.clone()
    args.n = len(Ly)
    #8 st_n_samples worked best, 5 sinkhorn iter, 1 as tau
    #align
    time0 = time.time()
    loss, P, Ly_ = graph.graph_dist(args, plot=False, Ly=Ly, take_ly_exp=False)
    dur_ot = time.time() - time0

    orig_idx = P.argmax(-1).cpu().numpy()
    perm_mx = False
    if perm_mx:
        P_max = P.max(-1, keepdim=True)[0]
        P[P < P_max - .1] = 0
        P[P > 0] = 1

    new_cls = orig_cls[perm][orig_idx].reshape(-1)
    mi = utils.normalizedMI(orig_cls, new_cls)
    #return mi
    Lx = args.Lx
    time0 = time.time()
    x_reg, y_reg, (P_st, loss_st) = st.find_permutation(Ly.cpu().numpy(),
                                                        Lx.cpu().numpy(),
                                                        args.st_it,
                                                        args.st_tau,
                                                        args.st_n_samples,
                                                        args.st_epochs,
                                                        args.st_lr,
                                                        loss_type='w',
                                                        alpha=0,
                                                        ones=True,
                                                        graphs=True)
    dur_st = time.time() - time0
    orig_idx = P_st.argmax(-1)

    new_cls_st = orig_cls[perm][orig_idx].reshape(-1)
    mi_st = utils.normalizedMI(orig_cls, new_cls_st)
    #print('{} COPT {} GOT {} dur ot {} dur st {}'.format(n_remove, mi, mi_st, dur_ot, dur_st))
    print('{} {} {} {} {}'.format(n_remove, mi, mi_st, dur_ot, dur_st))
    return mi
Exemplo n.º 7
0
def classify(dataset,
             queries,
             dataset_cls,
             target,
             args,
             dataset0=None,
             queries0=None):
    """
    classification tasks using various methods.
    dataset0, queries0 are original, non-sketched graphs. dataset, queries contain sketched graphs.
    """
    if dataset0 is None:
        dataset0 = dataset
        queries0 = queries
    #with open(args.graph_fname, 'rb') as f:
    #    graphs = pickle.read(f)
    n_data = len(dataset)
    n_queries = len(queries)
    ot_cost = np.zeros((len(queries), len(dataset)))

    netlsd_cost = np.zeros((len(queries), len(dataset)))

    Ly_mx = []
    Lx_mx = []
    data_graphs = []
    heat_l = []
    #avg_deg = 0
    for i, data in enumerate(dataset):
        #pdb.set_trace()
        if isinstance(data, torch.Tensor):
            L = data
        else:
            n_nodes = len(data.nodes())
            L = utils.graph_to_lap(data)

        avg_deg = (L.diag().mean())
        L /= avg_deg
        #Ly_mx.append(L[torch.triu(torch.ones(n_nodes, n_nodes), diagonal=1) > 0])
        Ly_mx.append(L)
        #pdb.set_trace()

        heat_l.append(netlsd.heat(L.numpy()))
    #avg_deg /= len(dataset)

    for i, q in enumerate(tqdm(queries, desc='queries')):
        '''###
        if isinstance(data, torch.Tensor):
            L = data
        else:
            n_nodes = len(data.nodes())
            L = utils.graph_to_lap(data)

        '''
        Lx = utils.graph_to_lap(q)
        avg_deg = (Lx.diag().mean())
        Lx /= avg_deg

        args.Lx = Lx

        args.m = len(q.nodes())
        q_heat = netlsd.heat(Lx.numpy())
        Lx_mx.append(args.Lx)

        for j, data in enumerate(dataset):

            Ly = Ly_mx[j].clone()
            args.n = len(Ly)
            min_loss = 10000

            for _ in range(1):
                loss, P, Ly_ = graph.graph_dist(args,
                                                plot=False,
                                                Ly=Ly,
                                                take_ly_exp=False)
                #pdb.set_trace()
                if loss < min_loss:
                    min_loss = loss

            ot_cost[i][j] = min_loss
            netlsd_cost[i][j] = netlsd.compare(q_heat, heat_l[j])

    if args.dataset_type == 'real':
        ot_cost1 = (ot_cost - ot_cost.mean()) / np.std(ot_cost)
        ot_pred = ot_cost.argmin(1)
        ot_acc00 = np.equal(dataset_cls[ot_pred], target).sum() / len(target)

        print('OT ACC |{} '.format(ot_acc00))

        ot_sorted = np.argsort(ot_cost, axis=-1)

        #pdb.set_trace()
        ot_cls = dataset_cls[ot_sorted[:, :3]].tolist()

        combine_pred = np.zeros(len(target))
        for i, ot_c in enumerate(ot_cls):

            counter = collections.Counter()
            counter.update(ot_c)

            #pdb.set_trace()
            common = counter.most_common(1)[0][0]
            combine_pred[i] = common

        combine_acc = np.equal(combine_pred, target).sum() / len(target)
        #pdb.set_trace()
        ###
        ot_pred = ot_cost.argmin(1)
        ot_acc = np.equal(dataset_cls[ot_pred], target).sum() / len(target)

        netlsd_pred = netlsd_cost.argmin(1)
        netlsd_acc = np.equal(dataset_cls[netlsd_pred],
                              target).sum() / len(target)
        print('OT ACC |{} '.format(ot_acc))
        return ot_acc00, netlsd_acc

    ot_cost_ = torch.from_numpy(ot_cost)
    #for combined, can add dist here
    ot_cost_ranks = torch.argsort(ot_cost_, -1)[:, :args.n_per_cls]
    ones = torch.ones(args.n_per_cls * 3)  #args.n_per_cls*2 (n_cls*2) 100
    ot_cls = np.ones(n_queries)

    combine_cls = np.ones(n_queries)
    dataset_cls_t = torch.from_numpy(dataset_cls)
    #pdb.set_trace()
    for i in range(n_queries):  #for each cls
        cur_ranks_ot = dataset_cls_t[ot_cost_ranks[i]]
        ranked = torch.zeros(100)  #n_cls*2
        ranked.scatter_add_(src=ones, index=cur_ranks_ot, dim=-1)
        ot_cls[i] = torch.argmax(ranked).item()

    ot_cost_means = np.mean(ot_cost.reshape(n_queries,
                                            n_data // args.n_per_cls,
                                            args.n_per_cls),
                            axis=-1)
    ot_idx = np.argmin(ot_cost_means, axis=-1) * args.n_per_cls

    print('ot_cost mx ', ot_cost)
    ot_cls1 = dataset_cls[ot_idx]
    ot_acc, ot_acc1 = np.equal(ot_cls, target).sum() / len(target), np.equal(
        ot_cls1, target).sum() / len(target)
    print('ot acc1 {} ot acc {} '.format(ot_acc1, ot_acc))
Exemplo n.º 8
0
def view(dataset_lo, dataset_cls_lo, args):
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    #ax.scatter(xs, ys, zs, c=c, marker=m)
    n_data = len(dataset_lo)
    Ly_mx = []
    ones = torch.ones(3, 3).triu(diagonal=1)
    for i, data in enumerate(dataset_lo):
        #n_nodes = len(data.nodes())
        L = utils.graph_to_lap(data)
        #Ly_mx.append(L[torch.triu(torch.ones(n_nodes, n_nodes), diagonal=1) > 0])
        L = torch.sort(L[ones > 0].view(-1))[0]
        Ly_mx.append(L)

    #cls2label = {0:0, 1:1, 4:2, 5:3, 7:4, 8:5, 2:6, 3:7}
    #cls2label = {0:0, 1:1, 4:2, 5:3, 7:4, 8:5, 2:6, 3:7}
    #cls2c = {0:'r',1:'b',2:'g',3:'c',4:'m',5:'k',6:'y', 7:'.77'}
    cls2c = {0: 'r', 1: 'b', 2: 'g', 3: 'c', 4: 'm', 5: 'k', 6: 'y', 7: '.77'}
    #cls2label = {0:'block2',1:'rand_reg',2:'barabasi',3:'block3',4:'block4',5:'k',6:'y',7:'4'}
    cls2label = {
        0: 'block-2',
        1: 'random regular',
        2: 'barabasi',
        3: 'block-3',
        4: 'powerlaw tree',
        5: 'caveman',
        6: 'watts-strogatz',
        7: 'binomial'
    }
    c_l = []
    labels = []
    for i in range(n_data):
        c_l.append(cls2c[dataset_cls_lo[i]])
        labels.append(cls2c[dataset_cls_lo[i]])
    ar = torch.stack(Ly_mx)
    #pdb.set_trace()
    #ar = (ar/torch.norm(ar, 2, dim=-1, keepdim=True)).t().numpy() #.transpose() #.t().numpy()
    ar = (ar).t().numpy()  #.transpose() #.t().numpy()
    #ax.scatter(ar[0], ar[1], ar[2], c=c_l, label=labels)#, c=c, marker=m)
    ####
    #'''
    #zoom out
    ax.set_ylim3d(-17, ar[1].max())
    ax.set_zlim3d(-10, ar[2].max())
    ax.set_xlim3d(-20, ar[0].max())
    #'''
    #'''
    #zoom in
    ax.set_ylim3d(-2, ar[1].max())
    ax.set_zlim3d(-1, ar[2].max())
    ax.set_xlim3d(-5, ar[0].max())
    range_ar = np.array(list(range(n_data)))
    markers = ['^', 'o', 'x', '.', '1', '3', '+', '4', '5']
    marker_cnt = 0
    for i in range(8):
        if i == 6 or i == 7 or i == 2 or i == 3:
            continue
        idx = range_ar[dataset_cls_lo == i]
        #pdb.set_trace()
        #ax.scatter(ar[0][idx], ar[1][idx], ar[2][idx], c=cls2c[i], label=cls2label[i])#, c=c, marker=m)
        ax.scatter(ar[0][idx],
                   ar[1][idx],
                   ar[2][idx],
                   c=cls2c[i],
                   marker=markers[marker_cnt],
                   label=cls2label[i])  #, c=c, marker=m)
        marker_cnt += 1
    ax.set_xlabel('X')
    ax.set_ylabel('Y')
    ax.set_zlabel('Z')
    ax.legend()
    #plt.title('3D sketches of 10-node graphs (zoomed)', fontsize=18)
    plt.title('3D sketches (zoomed)', fontsize=18)
    #plt.title('3D sketches of 10-node graphs', fontsize=18)
    #plt.title('Three dimensional COPT projections of 20-node graphs')
    #'''
    path = 'data/projection_{}.jpg'.format(args.data_dim)
    fig.savefig(path)
    print('plot saved to {}'.format(path))