Exemplo n.º 1
0
    return [experiment] + np.mean(results, axis=0).tolist()


if __name__ == "__main__":

    reset()

    arguments = docopt(__doc__)

    pd.set_option("display.expand_frame_repr", False)

    pheno_path = "./data/phenotypes/Phenotypic_V1_0b_preprocessed949.csv"
    pheno = load_phenotypes(pheno_path)

    hdf5 = hdf5_handler("./data/abide_cc200_tichu.hdf5", "a")

    valid_derivatives = ["cc200", "aal", "ez", "ho", "tt", "dosenbach160"]
    derivatives = [
        derivative for derivative in arguments["<derivative>"]
        if derivative in valid_derivatives
    ]

    experiments = []

    for derivative in derivatives:

        config = {"derivative": derivative}

        if arguments["--whole"]:
            experiments += [format_config("{derivative}_whole", config)],
                    help='folder containing the stim times')

#-----------------------------------------------------------------------------------------------
args = parser.parse_args()
visits = ['visit1','visit2']#args.nifti_folder
in_rois = args.in_rois
subjects_ids_csv = args.subjects_ids
output_file = args.output_file
nifti_type = args.nifti_type
stims_folder = args.stims_folder

if not isinstance(visits,list):
    visits = [visits]

# Instance output file
output_file = hdf5_handler(output_file,'a')

# Load clinical data
subjects_ids = pd.read_csv(subjects_ids_csv,header=None)

# Create roi and correlation object
masker = NiftiLabelsMasker(labels_img=in_rois, standardize=True)
correlation_measure = ConnectivityMeasure(kind='correlation')

ids_nifts = subjects_ids.values.astype(str)
# ids_nifts = ids_nifts[ids_nifts != 'nan']


for visit in visits:
    if nifti_type == 'errts':
        nifti_files = glob.glob('../'+visit+'/*+tlrc.BRIK')
Exemplo n.º 3
0
            patient_storage.attrs["sex"] = record["SEX"]
            patient_storage.create_dataset(derivative, data=func_data[pid])


if __name__ == "__main__":

    random.seed(19)
    np.random.seed(19)

    arguments = docopt(__doc__)

    folds = int(arguments["--folds"])
    pheno_path = "./data/phenotypes/Phenotypic_V1_0b_preprocessed949.csv"
    pheno = load_phenotypes(pheno_path)

    hdf5 = hdf5_handler("./data/abide_aal_tichu.hdf5", "a")
    #hdf5 = hdf5_handler("./data/abide_cc200_tichu.hdf5", "a")
    #hdf5 = hdf5_handler("./data/abide_dosenbach160_tichu.hdf5", "a")

    valid_derivatives = ["cc200", "aal", "ez", "ho", "tt", "dosenbach160"]
    derivatives = [
        derivative for derivative in arguments["<derivative>"]
        if derivative in valid_derivatives
    ]

    if "patients" not in hdf5:
        load_patients_to_file(hdf5, pheno, derivatives)

    if arguments["--whole"]:
        print
        print "Preparing whole dataset"
Exemplo n.º 4
0
                       prev_model_2_path=ae2_model_path,
                       code_size_1=code_size_1,
                       code_size_2=code_size_2)


if __name__ == "__main__":

    reset()

    arguments = docopt(__doc__)

    pheno_path = "./data/phenotypes/Phenotypic_V1_0b_preprocessed1.csv"
    pheno = load_phenotypes(pheno_path)

    # hdf5 = hdf5_handler("./data/abide.hdf5", "a")
    hdf5 = hdf5_handler(bytes("./data/abide.hdf5", encoding="utf8"), 'a')

    valid_derivatives = ["cc200", "aal", "ez", "ho", "tt", "dosenbach160"]
    derivatives = [
        derivative for derivative in arguments["<derivative>"]
        if derivative in valid_derivatives
    ]

    experiments = []

    for derivative in derivatives:

        config = {"derivative": derivative}

        if arguments["--whole"]:
            experiments += [format_config("{derivative}_whole", config)],
            patient_storage.attrs["sex"] = record["SEX"]
            patient_storage.create_dataset(derivative, data=func_data[pid])


if __name__ == "__main__":

    random.seed(19)
    np.random.seed(19)

    arguments = docopt(__doc__)

    folds = int(arguments["--folds"])
    pheno_path = "./data/phenotypes/Phenotypic_V1_0b_preprocessed1.csv"
    pheno = load_phenotypes(pheno_path)

    hdf5 = hdf5_handler("./data/abide.hdf5", "a")

    valid_derivatives = ["cc200", "aal", "ez", "ho", "tt", "dosenbach160"]
    derivatives = [
        derivative for derivative in arguments["<derivative>"]
        if derivative in valid_derivatives
    ]

    if "patients" not in hdf5:
        load_patients_to_file(hdf5, pheno, derivatives)

    if arguments["--whole"]:
        print
        print "Preparing whole dataset"
        prepare_folds(hdf5,
                      folds,