Exemplo n.º 1
0
def get_data(searcher):
    dbstr = normalize('NFKD', searcher).encode('ascii', 'ignore')
    try:
        val = searchers[dbstr]
    except KeyError:
        val = None

    data = val['info']()
    els = {}
    for el in request.args:
        if el in data:
            els[el] = data[el]

    db_name = None
    for el in els:
        if db_name:
            if utils.compare_db_strings(els[el]['db_name'], db_name):
                return Response(
                    utils.build_api_error(dbstr,
                                          utils.api_err_incompat_search))
        else:
            db_name = els[el]['db_name']

    splits = db_name.split('/')

    search = {}
    #Recover the database name and collection name
    search['database'] = splits[0]
    search['collection'] = splits[1]
    search['query'] = {}

    for el in els:
        utils.interpret(search['query'], el, request.args[el])

    return Response(utils.simple_search(search))
Exemplo n.º 2
0
def live_page_pg(db):
    if (db.startswith("<") and db.endswith(">")):
        title = "API Description"
        return render_template("example.html", **locals())
    search = utils.create_search_dict(table = db, request = request)
    for el in request.args:
        utils.interpret(search['query'], el, request.args[el], None)
    search_tuple = utils.simple_search(search)
    return Response(utils.build_api_search(db, search_tuple, request = request), mimetype='application/json')
Exemplo n.º 3
0
 def set_pid_speed(self, speed):
     data = utils.decTo256(speed)
     resp = self.brook.write(self.cid, 28, data)
     print(utils.interpret(resp))
     self.desired_speed = speed
     if (self.collision):
         self.collision_detect()
Exemplo n.º 4
0
resolution = 16

##########################################################################
slice = 'inline'  #Inline, crossline, timeslice or full
slice_no = 339
#Log to tensorboard
logger = tb_logger.TBLogger('log', 'Test')
logger.log_images(slice + '_' + str(slice_no),
                  get_slice(data, data_info, slice, slice_no),
                  cm='gray')
""" Plot extracted features, class probabilities and salt-predictions for slice """
#features (attributes) from layer 5
im = interpret(network.f5,
               data,
               data_info,
               slice,
               slice_no,
               im_size,
               resolution,
               use_gpu=use_gpu)
logger.log_images(slice + '_' + str(slice_no) + ' _f5', im)

#features from layer 4
im = interpret(network.f4,
               data,
               data_info,
               slice,
               slice_no,
               im_size,
               resolution,
               use_gpu=use_gpu)
logger.log_images(slice + '_' + str(slice_no) + ' _f4', im)
Exemplo n.º 5
0
    d2 = tf.layers.dense(d1, n_filters, activation=tf.nn.relu)

    logits = tf.layers.dense(d2, n_classes)

    _loss, raw_probs = wordtree_loss(logits=logits,
                                     labels=y_onehot,
                                     word_tree=word_tree)
    loss = tf.reduce_mean(_loss)

    train_op = tf.train.AdamOptimizer(1e-2).minimize(loss)

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for step in range(1000):
            idxs = np.random.randint(0, num_ex, 8)
            _, l, rp = sess.run([train_op, loss, raw_probs],
                                feed_dict={
                                    x: x_b[idxs],
                                    y: y_b[idxs]
                                })
            if (step + 1) % 100 == 0:
                print('Step {}: loss = {:.03e}'.format(step + 1, l))

        print('===TEST===')
        rp, = sess.run([raw_probs],
                       feed_dict={x: gen_ex(childless, parents, children, 0)})
        for r, gt in zip(rp, childless):
            pred_class = interpret(r, num_root, children)
            if not pred_class == gt:
                print('Truth: {}\t|\tPred: {}'.format(class_list[gt],
                                                      class_list[pred_class]))
Exemplo n.º 6
0
 def set_tpr(self):
     data = utils.decTo256(self.motor_type["tpr"])
     resp = self.brook.write(self.cid, 23, data)
     print(utils.interpret(resp))
Exemplo n.º 7
0
        print("Iteration:", i, "Training loss:", utils.var_to_np(loss))
        if LOG_TENSORBOARD:
            logger.log_scalar("training_loss", utils.var_to_np(loss), i)
        for k, v in utils.compute_accuracy(torch.argmax(output, 1), labels).items():
            if LOG_TENSORBOARD:
                logger.log_scalar("training_" + k, v, i)
            print(" -", k, v, "%")

    # every 100th iteration
    if i % 100 == 0 and LOG_TENSORBOARD:
        network.eval()

        # Output predicted train/validation class/probability images
        for class_img in train_class_imgs + val_class_imgs:

            slice = class_img[1]
            slice_no = class_img[2]

            class_img = utils.interpret(
                network.classify, data, data_info, slice, slice_no, IM_SIZE, 16, return_full_size=True, use_gpu=USE_GPU,
            )
            logger.log_images(slice + "_" + str(slice_no) + "_pred_class", class_img[0], step=i)

            class_img = utils.interpret(
                network, data, data_info, slice, slice_no, IM_SIZE, 16, return_full_size=True, use_gpu=USE_GPU,
            )
            logger.log_images(slice + "_" + str(slice_no) + "_pred_prob", class_img[0], i)

        # Store trained network
        torch.save(network.state_dict(), join(ROOT_PATH, "saved_model.pt"))