Exemplo n.º 1
0
def eval(gt, det):
    gt_bbox_num = 0
    det_bbox_num = 0
    tp = 0

    miss_img = []

    for img in gt.keys():
        gt_bboxes = gt[img]
        img_tp = 0

        gt_bbox_num += len(gt_bboxes)
        if img not in det:
            continue
        det_bbox_num += len(det[img])

        for det_bbox in det[img]:
            if (utils.iou_calc1(gt_bboxes, det_bbox[:4]) >= 0.5).any():
                img_tp += 1
        
        tp += img_tp
        if(img_tp != len(det[img]) or img_tp != len(gt[img])):
            miss_img.append(img)

    recall = tp / gt_bbox_num
    precision = tp / det_bbox_num
    print('gt_bbox_num = %d' % gt_bbox_num)
    print('det_bbox_num = %d' % det_bbox_num)
    print('tp = %d' % tp)
    print('F1 = %f' % (2. / (1. / recall + 1. / precision)))

    return sorted(miss_img)
Exemplo n.º 2
0
    def dropObjectsInIgr(self, gt, det):
        det = np.array(det)
        idxFr = gt[:, 4] != 0
        idxIgr = gt[:, 4] == 0
        igrRegion = gt[idxIgr, 0:4]

        igrDet = np.ones(len(det), dtype=np.bool)
        for i in range(len(igrRegion)):
            iou = iou_calc1(igrRegion[i], det[:, :4])
            igrDet[iou > 0.5] = False

        return gt[idxFr][:, [0, 1, 2, 3, 5]], det[igrDet]
Exemplo n.º 3
0
    def make_chip(self, sample, imgset):
        # get image and mask informations
        image = cv2.imread(sample['image'])
        height, width = sample['height'], sample['width']
        img_id = osp.splitext(osp.basename(sample['image']))[0]
        mask_path = osp.join(self.segmentation_dir, '{}.hdf5'.format(img_id))
        with h5py.File(mask_path, 'r') as hf:
            mask = np.array(hf['label'])
        mask_h, mask_w = mask.shape[:2]

        # make chip
        region_box, contours = utils.generate_box_from_mask(mask)
        region_box = utils.generate_crop_region(region_box, mask,
                                                (mask_w, mask_h),
                                                (width, height), self.gbm,
                                                args.aim)
        region_box = utils.resize_box(region_box, (mask_w, mask_h),
                                      (width, height))

        # make tiling
        if args.tiling and imgset != "val":
            tiling = utils.add_tiling((width, height))
            for pattern in tiling:
                if utils.iou_calc1(pattern, region_box).max() < 0.85:
                    region_box = np.vstack((region_box, tiling))

        if args.show:
            utils.show_image(image[..., ::-1], np.array(region_box))

        # get box and class
        gt_bboxes, gt_cls = sample['bboxes'], sample['cls']

        # generate chip annotations and writer chip image
        chip_gt_list, chip_label_list, neglect_list = self.generate_region_gt(
            region_box, gt_bboxes, gt_cls)
        chip_loc = self.write_chip_and_anno(image, img_id, region_box,
                                            chip_gt_list, chip_label_list,
                                            neglect_list, imgset)

        return chip_loc
Exemplo n.º 4
0
    def augPaster(self, chip_img, loc, bbox, labels):
        # 当前chip中目标尺度和中心点, 寻找hardlabel
        obj_scales = bbox[:, 2:4] - bbox[:, :2]
        obj_center = (bbox[:, 2:4] + bbox[:, :2]) / 2
        # hardsIn = [hard for hard in self.hard_cls if hard in labels]

        # 抠出道路掩码并且创建粘贴点候选序列
        road_chip = self.roadMask[loc[1]:loc[3], loc[0]:loc[2]].copy()
        # utils.show_image(road_chip)
        cand_chip = cv2.resize(road_chip, (0, 0),
                               fx=hpy["fx"],
                               fy=hpy["fy"],
                               interpolation=cv2.INTER_NEAREST)
        cand_chip = cv2.erode(cand_chip, self.kernel)
        # utils.show_image(cand_chip)
        cand_points = np.argwhere(cand_chip[..., 0] >= 200) * (
            road_chip.shape[0] / cand_chip.shape[0])
        np.random.shuffle(cand_points)

        # 粘贴
        acount = 0  # 当前粘贴的次数
        for time, point in enumerate(cand_points):
            if time > 500:  # 如果找了500次仍然没有找到合适的位置, 放弃
                break
            adj_obj_idx = np.argmin(np.power(point - obj_center, 2).sum(1))
            adj_scale = obj_scales[adj_obj_idx]
            adj_label = labels[adj_obj_idx]
            adj_rank = self.scale_rank[adj_label]
            # if acount < len(hardsIn):
            #     pasting_cls = hardsIn[acount]
            # elif adj_label in self.aid_cls:
            if adj_label in self.aid_cls:
                pasting_cls = np.random.choice(self.aid_cls[adj_label])
            else:
                continue
            scale_map = self.scale_rank[pasting_cls] / adj_rank
            scale = np.array(adj_scale * scale_map)

            # 寻找粘贴对象
            paster_cls_pool = np.array(self.paster_pool[pasting_cls])
            paster_shape = np.array(paster_cls_pool[:, [4, 5, 6]],
                                    dtype=np.float)
            mask1 = paster_shape[:,
                                 scale.argmax()] > paster_shape[:,
                                                                scale.argmin()]
            mask2 = paster_shape[:, scale.argmax()] >= 0.75 * scale.max()
            mask3 = paster_shape[:, scale.argmax()] <= 2.5 * scale.max()
            # mask4 = paster_shape[:, 2] >= 0.5 * (scale[0] / scale[1])
            # mask5 = paster_shape[:, 2] <= 1.5 * (scale[0] / scale[1])
            mask = mask1 & mask2 & mask3
            paster_cls_pool = paster_cls_pool[mask]
            if len(paster_cls_pool) == 0:
                continue
            paster_idx = np.random.choice(np.arange(len(paster_cls_pool)))
            paster_info = paster_cls_pool[paster_idx]
            paster_path = osp.join(self.maskPools_dir, "_".join(paster_info))
            paster = cv2.imread(paster_path)

            # 获取粘贴位置, 判断位置是否合法
            paster_box = self.getPastingLocal(chip_img, paster, scale, point)
            paster_area = np.product(paster_box[2:] - paster_box[:2])
            paster_road_area = road_chip[paster_box[1]:paster_box[3],
                                         paster_box[0]:paster_box[2]].sum()
            if utils.iou_calc1(paster_box, bbox).max(
            ) > hpy["obt"] or paster_road_area < paster_area * hpy["ort"]:
                continue

            # 调整明亮度, 粘贴
            paster = utils.adjustLumin(chip_img, paster,
                                       float(paster_info[-2]), hpy['alpha'])
            chip_img = self.pasting(chip_img, paster, paster_box)
            # utils.show_image(chip_img, np.array([paster_box]))

            # 添加尺度和中心信息、加入chip标签
            obj_center = np.vstack(
                (obj_center, paster_box[2:4] + paster_box[:2] / 2))
            obj_scales = np.vstack(
                (obj_scales, paster_box[2:4] - paster_box[:2]))
            labels = np.hstack((labels, int(pasting_cls)))
            bbox = np.vstack((bbox, paster_box))

            # 计数
            self.paster_num[int(pasting_cls)] += 1
            acount += 1
            if acount >= hpy["pasting_maximum"]:
                break

        return chip_img, bbox, labels