Exemplo n.º 1
0
def hamiltonian_vector_field(hamiltonian, x, t, backward_time=False):
    """X_H appearing in Hamilton's eqs: xdot = X_H(x)"""
    # note, t unused.
    dx = tf.gradients(hamiltonian(x), x)[0]
    dq, dp = extract_q_p(dx)
    if not backward_time:
        return join_q_p(dp, -dq)
    else:
        return join_q_p(-dp, dq)
Exemplo n.º 2
0
 def sample(self, N):
     F1 = tf.reshape(self.base_dist_F1.sample(N), shape=[N,1]) # sh = [N,1]
     otherF = self.base_dist_otherF.sample(N)  # sh = [N,d*n-1]
     F = tf.concat([F1, otherF], 1)       # sh = [N,d*n]
     F = tf.reshape(F, shape=[N]+self.sh) # sh = [N,d,n,1]
     Psi = self.base_dist_Psi.sample(N)
     return join_q_p(Psi, F)
Exemplo n.º 3
0
def test_closed_toda_3():
    # Choose points such that q1+q2+q3 = p1+p2+p3 = 0
    q = tf.reshape([.1, .2, -.3], [1, 1, 3, 1])
    p = tf.reshape([.3, .5, -.8], [1, 1, 3, 1])
    h1 = closed_toda(join_q_p(q, p))
    # Fourier modes:
    # a1 = x + i y
    # = 1/sqrt(3)(1/w .1 + w .2 - .3) =
    # = 1/sqrt(3)((-1/2 - i sqrt(3)/2) .1 + (-1/2 + i sqrt(3)/2) .2 - .3)
    x = 1 / tf.sqrt(3.) * (-1 / 2. * (.1 + .2) - .3)
    # y = 1/tf.sqrt(3.)( tf.sqrt(3.)/2. * (.1 - .2) )
    y = 1 / 2. * (-.1 + .2)
    # b1 = px + i py = 1/sqrt(3)(1/w p1 + w p2 + p3)
    # = 1/sqrt(3)( (-1/2 - i sqrt(3)/2) .3 + (1/2 + i sqrt(3)/2) .5 - .8)
    # = 1/sqrt(3)( -1/2 * (.3 + .5) - .8) - i 1/2 (.3 - .5)
    px = 1 / tf.sqrt(3.) * (-1 / 2. * (.3 + .5) - .8)
    py = -1 / 2. * (.3 - .5)
    kin = px**2 + py**2
    expected_kin = tf.reduce_sum(tf.square(p)) * .5
    assert_allclose(kin, expected_kin)
    q1 = q[0, 0, 0, 0]
    q2 = q[0, 0, 1, 0]
    q3 = q[0, 0, 2, 0]
    expected_q12 = -2 * y
    expected_q23 = y - tf.sqrt(3.) * x
    expected_q31 = y + tf.sqrt(3.) * x
    assert_allclose(q1 - q2, expected_q12)
    assert_allclose(q2 - q3, expected_q23)
    assert_allclose(q3 - q1, expected_q31)
    h2 = kin + tf.exp(expected_q12) + tf.exp(expected_q23) + tf.exp(
        expected_q31)
    assert_allclose(h1, h2)
    print('test_closed_toda_3 passed')
Exemplo n.º 4
0
 def inverse(self, z):
     q, p = extract_q_p(x)
     q_prime = self._f.inverse(q)
     df = tf_gradients_ops.jacobian(self._f(q_prime),
                                    q_prime,
                                    use_pfor=True)
     return join_q_p(q_prime,
                     tf.tensordot(df, p, [[4, 5, 6, 7], [0, 1, 2, 3]]))
Exemplo n.º 5
0
 def call(self, x):
     q, p = extract_q_p(x)
     q_prime = self._f(q)
     # Df(q)^{-1} = D(f^{-1}( q_prime ))
     df_inverse = tf_gradients_ops.jacobian(self._f.inverse(q_prime),
                                            q_prime,
                                            use_pfor=True)
     return join_q_p(
         q_prime, tf.tensordot(df_inverse, p, [[4, 5, 6, 7], [0, 1, 2, 3]]))
Exemplo n.º 6
0
 def inverse(self, x):
     qq, pp = extract_q_p(x)
     if self._first_only:
         I000 = 0.5 * (tf.square(qq[:, 0, 0, 0]) +
                       tf.square(pp[:, 0, 0, 0]))
         phi000 = tf.atan(qq[:, 0, 0, 0] / pp[:, 0, 0, 0])
         I = pp
         phi = qq
         I = self._assign_000(I, I000)
         phi = self._assign_000(phi, phi000)
     else:
         phi = tf.atan(qq / pp)
         I = 0.5 * (tf.square(qq) + tf.square(pp))
     return join_q_p(phi, I)
Exemplo n.º 7
0
 def call(self, z):
     phi, I = extract_q_p(z)
     if self._first_only:
         sqrt_two_I = tf.sqrt(2. * I[:, 0, 0, 0])
         q000 = tf.multiply(sqrt_two_I, tf.sin(phi[:, 0, 0, 0]))
         p000 = tf.multiply(sqrt_two_I, tf.cos(phi[:, 0, 0, 0]))
         p = I
         q = phi
         p = self._assign_000(p, p000)
         q = self._assign_000(q, q000)
     else:
         sqrt_two_I = tf.sqrt(2. * I)
         q = tf.multiply(sqrt_two_I, tf.sin(phi))
         p = tf.multiply(sqrt_two_I, tf.cos(phi))
     return join_q_p(q, p)
Exemplo n.º 8
0
 def call(self, z):
     # Chose p as the action, q as the angle.
     q, p = extract_q_p(z)
     return join_q_p(q, self._flow(p))
Exemplo n.º 9
0
 def _reshape_and_join_q_p(self, q, p, sh):
     q = tf.reshape(q, sh)
     p = tf.reshape(p, sh)
     return join_q_p(q, p)
Exemplo n.º 10
0
 def call(self, z):
     phi, I = extract_q_p(z)
     q = tf.sin(phi)
     p = tf.multiply(I, 1 / (tf.cos(phi) + self.eps))
     return join_q_p(q, p)
Exemplo n.º 11
0
 def inverse(self, x):
     q, p = extract_q_p(x)
     return join_q_p(-p, q)
Exemplo n.º 12
0
 def call(self, x):
     q, p = extract_q_p(x)
     return join_q_p(p, -q)
Exemplo n.º 13
0
 def inverse(self, x):
     q, p = extract_q_p(x)
     return join_q_p(q, p - self._shift_model(q))
Exemplo n.º 14
0
 def call(self, x):
     q, p = extract_q_p(x)
     return join_q_p(q, p + self._shift_model(q))
Exemplo n.º 15
0
 def inverse(self, x):
     q, p = extract_q_p(x)
     phi = tf.asin(q)
     I = tf.multiply(p, tf.cos(phi) + self.eps)
     return join_q_p(phi, I)
Exemplo n.º 16
0
 def inverse(self, x):
     # Chose p as the action, q as the angle.
     q, p = extract_q_p(x)
     return join_q_p(q, self._flow.inverse(p))
Exemplo n.º 17
0
 def sample(self, N):
     u = self.base_dist_u.sample(N)
     phi = self.base_dist_phi.sample(N)
     return join_q_p(phi, u)
Exemplo n.º 18
0
 def call(self, x):
     q, p = extract_q_p(x)
     return join_q_p(
         q * tf.exp(self.scale_exponent),
         tf.exp(-self.scale_exponent) * (p + self._shift_model(q)))
Exemplo n.º 19
0
 def inverse(self, x):
     q, p = extract_q_p(x)
     return join_q_p(q * tf.exp(-self.scale_exponent),
                     p * tf.exp(self.scale_exponent) - self._shift_model(q))
Exemplo n.º 20
0
def make_loss(settings, T, inp):
    name = settings['loss']
    with tf.name_scope("loss"):
        if name == "circle":
            pass
        else:
            with tf.name_scope("canonical_transformation"):
                x = T(inp)
                if settings['visualize']:
                    q, p = extract_q_p(x)
                    tf.summary.histogram("q", q)
                    tf.summary.histogram("p", p)
                K = settings['hamiltonian'](x)
                if settings['visualize']:
                    tf.summary.histogram('K-Hamiltonian', K)
            if name == "dKdphi":
                # K independent of phi
                dphi, _ = extract_q_p(tf.gradients(K, z)[0])
                if settings['visualize']:
                    tf.summary.histogram('dKdphi', dphi)
                # loss = tf.reduce_mean( tf.square(dphi) + \
                #     settings['elastic_net_coeff'] * tf.pow( tf.abs(dphi), 3 ) )
                loss = tf.sqrt(tf.reduce_mean(0.5 * tf.square(dphi)))
                if 'lambda_range' in settings:
                    # With penalizing K (energy) outside low,high:
                    range_reg = tf.reduce_mean(
                        confining_potential(K, settings['low_K_range'],
                                            settings['high_K_range']))
                    loss += settings['lambda_range'] * range_reg
                if 'lambda_diff' in settings:
                    # add |K-val|^2 term
                    diff_loss = tf.reduce_mean(
                        tf.square(K - settings['diff_val']))
                    loss += settings['lambda_diff'] * diff_loss
            elif name == "conserved_radii":
                # Action variables as radii
                q_prime, p_prime = extract_q_p(z)
                dq_prime, dp_prime = extract_q_p(tf.gradients(K, z)[0])
                loss = tf.reduce_mean(
                    tf.square(q_prime * dp_prime - p_prime * dq_prime))
            elif name == "K_equal_F1_loss":
                # K = F_1
                _, F = extract_q_p(z)
                loss = tf.reduce_mean(tf.square(K - F[:, 0, 0, 0]))
            elif name == "KL":
                # Here T can contain a non-symplectic part such as scaling.
                KL_loss = tf.reduce_mean(K - T.log_jacobian_det(z))
                # Gradient penalty regularization:
                gp = compute_gradK_penalty(K, z)
                # Range regularization
                range_reg = tf.reduce_mean(
                    confining_potential(x, settings['low_x_range'],
                                        settings['high_x_range']))
                if settings['visualize']:
                    tf.summary.scalar("KL_loss", KL_loss)
                    # Monitor the derivative of K to understand how well we are doing
                    # due to unknown Z in KL. Assume distribution propto e^-u_1.
                    tf.summary.scalar("gradient_penalty", gp)
                    tf.summary.scalar("range_reg", range_reg)
                loss = KL_loss + \
                       settings['lambda_gp'] * gp + \
                       settings['lambda_range'] * range_reg
            elif name == "K_equal_action_H":
                # K = NN(I). Use MLP Hamiltonian
                _, I = extract_q_p(z)
                action_H = MLPHamiltonian()
                H_I = action_H(I)
                # Add a residual part corresponding to GGE, so that H should be small
                # TODO: Need temperatures, otherwise, does not make too much sense,
                # think about Kepler problem, where Is are > 0 and H < 0.
                H_I += tf.reduce_sum(I, [1, 2, 3])
                if settings['visualize']:
                    tf.summary.histogram('action-Hamiltonian', H_I)
                loss = tf.reduce_mean(tf.square(K - H_I))
            elif name == "K_indep_phi_T_periodic":
                # K independent of phi, T periodic
                phi, I = extract_q_p(z)
                dphi, _ = extract_q_p(tf.gradients(K, z)[0])
                # Impose K = K(I): normsq(dphi). (Here dphi has shape [N,d,n,1])
                normsq_dphi = normsq_nobatch(dphi)
                # MC estimate of the integral over I,phi:
                loss = tf.reduce_mean(normsq_dphi)
                # Impose phi periodic over periods (truncate): sum_n normsq(T(phi,I) - T(phi+2*pi*n,I))
                periods = tf.constant([-1, 1], dtype=DTYPE)
                periodic_constraint = tf.map_fn(\
                    lambda n : normsq_nobatch( x - T(join_q_p(phi + 2*np.pi*n, I)) ), periods)
                periodic_constraint = tf.reduce_sum(periodic_constraint,
                                                    0)  # sum_n
                # MC estimate of the integral over I,phi:
                periodic_constraint = tf.reduce_mean(periodic_constraint)
                # Sum constraints
                multiplier = 1.
                loss += multiplier * periodic_constraint
            else:
                raise NameError('loss %s not implemented', name)

        tf.summary.scalar('loss', loss)
    return loss