Exemplo n.º 1
0
    def __init__(self, args, transform=None, mode='test'):
        np.random.seed(args.seed)
        super(Hotel_DB, self).__init__()
        self.transform = transform

        total = True

        if 'seen' in mode:  # mode == *_seen or *_unseen
            mode_tmp = mode
            total = False
        else:
            mode_tmp = mode + '_seen'
            total = True

        self.datas, self.num_classes, _, self.labels, self.datas_bg = loadDataToMem(args.dataset_path,
                                                                                    args.dataset_name,
                                                                                    args.dataset_split_type,
                                                                                    mode=mode_tmp,
                                                                                    split_file_name=args.splits_file_name,
                                                                                    portion=args.portion)

        # if total:
        self.all_shuffled_data = get_shuffled_data(self.datas_bg,
                                                   seed=args.seed,
                                                   one_hot=False,
                                                   both_seen_unseen=True,
                                                   shuffle=False)
        # else: # todo
        #     self.all_shuffled_data = get_shuffled_data(self.datas, seed=args.seed, one_hot=False)

        print(f'hotel {mode} classes: ', self.num_classes)
        print(f'hotel {mode} length: ', self.__len__())
Exemplo n.º 2
0
 def __init__(self, args, transform=None, mode='train'):  # train or val
     super(CUBClassification, self).__init__()
     np.random.seed(args.seed)
     self.transform = transform
     self.datas, self.num_classes, self.length, self.labels, _ = loadDataToMem(
         args.dataset_path,
         args.dataset_name,
         args.dataset_split_type,
         mode=mode)
     self.shuffled_data = get_shuffled_data(self.datas, seed=args.seed)
Exemplo n.º 3
0
 def __init__(self, args, transform=None, mode='test'):
     np.random.seed(args.seed)
     super(CUBTest_Fewshot, self).__init__()
     self.transform = transform
     self.times = args.times
     self.way = args.way
     self.img1 = None
     self.c1 = None
     self.datas, self.num_classes, _, self.labels, _ = loadDataToMem(
         args.dataset_path,
         args.dataset_name,
         args.dataset_split_type,
         mode=mode)  # todo not updated
Exemplo n.º 4
0
    def __init__(self, args, transform=None, mode='train'):
        super(CUBTrain_Top, self).__init__()
        np.random.seed(args.seed)
        # self.dataset = dataset
        self.transform = transform
        self.datas, self.num_classes, self.length, self.labels, _ = loadDataToMem(
            args.dataset_path,
            args.dataset_name,
            args.dataset_split_type,
            mode=mode)

        self.shuffled_data = get_shuffled_data(datas=self.datas,
                                               seed=args.seed)
Exemplo n.º 5
0
    def __init__(self, args, transform=None, mode='test_seen', save_pictures=False):
        np.random.seed(args.seed)
        super(HotelTest, self).__init__()
        self.transform = transform
        self.save_pictures = save_pictures
        self.times = args.times
        self.way = args.way
        self.img1 = None
        self.c1 = None

        self.datas, self.num_classes, _, self.labels, self.datas_bg = loadDataToMem(args.dataset_path,
                                                                                    args.dataset_name,
                                                                                    args.dataset_split_type, mode=mode,
                                                                                    split_file_name=args.splits_file_name,
                                                                                    portion=args.portion)

        print(f'hotel {mode} classes: ', self.num_classes)
        print(f'hotel {mode} length: ', self.__len__())
Exemplo n.º 6
0
    def __init__(self, args, transform=None, mode='train', save_pictures=False):
        super(HotelTrain, self).__init__()
        np.random.seed(args.seed)
        self.transform = transform
        self.save_pictures = save_pictures
        self.class1 = 0
        self.image1 = None
        self.no_negative = args.no_negative

        self.datas, self.num_classes, self.length, self.labels, _ = loadDataToMem(args.dataset_path, args.dataset_name,
                                                                                  args.dataset_split_type,
                                                                                  mode=mode,
                                                                                  split_file_name=args.splits_file_name,
                                                                                  portion=args.portion)

        self.shuffled_data = get_shuffled_data(datas=self.datas, seed=args.seed)

        print('hotel train classes: ', self.num_classes)
        print('hotel train length: ', self.length)