Exemplo n.º 1
0
def computeGlobalImageMask():
  params = cu.loadParams('category imgsDir groundTruthsFile layer outputDir')
  arch = loadArchitecture('cnn.arch')
  A = projectCoordsToReceptiveField(arch,params['layer'])
  boxes = listBoxes(A)
  gt = loadBoxIndexFile(params['groundTruthsFile'])
  for imName in gt.keys():
    imgFile = params['imgsDir']+'/'+imName+'.jpg'
    w,h = Image.open(imgFile).size
    R = intersectWithGroundTruth(A,rescaleAllBoxes(gt[imName],227./w, 227./h))
    cu.saveMatrix(R,params['outputDir']+'/'+imName+'.'+params['category'])
Exemplo n.º 2
0
def computeGlobalImageMask():
    params = cu.loadParams('category imgsDir groundTruthsFile layer outputDir')
    arch = loadArchitecture('cnn.arch')
    A = projectCoordsToReceptiveField(arch, params['layer'])
    boxes = listBoxes(A)
    gt = loadBoxIndexFile(params['groundTruthsFile'])
    for imName in gt.keys():
        imgFile = params['imgsDir'] + '/' + imName + '.jpg'
        w, h = Image.open(imgFile).size
        R = intersectWithGroundTruth(
            A, rescaleAllBoxes(gt[imName], 227. / w, 227. / h))
        cu.saveMatrix(
            R, params['outputDir'] + '/' + imName + '.' + params['category'])
Exemplo n.º 3
0
def multipleRegionMasks():
  params = cu.loadParams('category imgsDir groundTruthsFile layer featuresDir outputDir')
  arch = loadArchitecture('cnn.arch')
  A = projectCoordsToReceptiveField(arch,params['layer'])
  s = len(A)
  gt = loadBoxIndexFile(params['groundTruthsFile'])
  for imName in gt.keys():
    imgFile = params['imgsDir']+'/'+imName+'.jpg'
    w,h = Image.open(imgFile).size
    idx = loadBoxIndexFile(params['featuresDir'] + '/' + imName + '.idx')
    M = np.zeros((len(idx[imName]),s,s))
    i = 0
    for box in idx[imName]:
        P = projectFeatureMapToImagePlane(box,A)
        M[i,:,:] = intersectWithGroundTruth(P,gt[imName])
        i += 1
    cu.saveMatrix(M,params['outputDir']+'/'+imName+'.'+params['category'])
Exemplo n.º 4
0
def multipleRegionMasks():
    params = cu.loadParams(
        'category imgsDir groundTruthsFile layer featuresDir outputDir')
    arch = loadArchitecture('cnn.arch')
    A = projectCoordsToReceptiveField(arch, params['layer'])
    s = len(A)
    gt = loadBoxIndexFile(params['groundTruthsFile'])
    for imName in gt.keys():
        imgFile = params['imgsDir'] + '/' + imName + '.jpg'
        w, h = Image.open(imgFile).size
        idx = loadBoxIndexFile(params['featuresDir'] + '/' + imName + '.idx')
        M = np.zeros((len(idx[imName]), s, s))
        i = 0
        for box in idx[imName]:
            P = projectFeatureMapToImagePlane(box, A)
            M[i, :, :] = intersectWithGroundTruth(P, gt[imName])
            i += 1
        cu.saveMatrix(
            M, params['outputDir'] + '/' + imName + '.' + params['category'])
import os,sys
import utils as cu
import scipy.io

if __name__ == "__main__":
  params = cu.loadParams('matFilesDir outFile')
  out = open(params['outFile'],'w')
  counter = 0
  for f in os.listdir(params['matFilesDir']):
    if not f.endswith('.mat') or f == 'gt_pos_layer_5_cache.mat': continue
    img = f.replace('.mat','')
    counter += 1
    print counter,img
    mat = scipy.io.loadmat(params['matFilesDir'] + '/' + f)
    idx = mat['gt'] == 0
    mat['boxes'] = mat['boxes'][idx[:,0],:]
    for i in range(mat['boxes'].shape[0]):
      box = mat['boxes'][i,:].tolist()
      out.write(img + ' ' + ' '.join(map(str, map(int,box))) + '\n' )
  out.close()
import os,sys
import utils as cu
import numpy as np

params = cu.loadParams('matrix1 matrix2 output')
Ma,Ia = cu.loadMatrixAndIndex(params['matrix1'])
Mb,Ib = cu.loadMatrixAndIndex(params['matrix2'])

extension = params['matrix1'].split('.')[-1]
cu.saveMatrix( np.concatenate( (Ma,Mb) ) , params['output']+'.'+extension)
out = open(params['output']+'.idx','w')
for r in Ia:
  out.write(' '.join(r)+'\n')
for r in Ib:
  out.write(' '.join(r)+'\n')
out.close()

    if t == maxTime - 1:
      prec, recall = eval.computePrecisionRecall(numPositives, results['tp'], results['fp'], output)
    else:
      prec, recall = eval.computePrecisionRecall(numPositives, results['tp'], results['fp'])
    performance.append( [prec, recall] )
  return performance

def saveTimeResults(categories, results, outputFile):
  out = open(outputFile,'w')
  out.write(' '.join(categories) + '\n')
  for i in range(results.shape[0]):
    r = results[i,:].tolist()
    out.write(' '.join(map(str,r)) + '\n')

if __name__ == "__main__":
  params = cu.loadParams('testMemDir relationFeaturesDir groundTruthDir outputDir category')
  categories, categoryIndex = getCategories()
  scoredDetections, maxTime = loadScores(params['testMemDir'], params['relationFeaturesDir'], categoryIndex)
  
  P = np.zeros( (maxTime, len(categories)) )
  R = np.zeros( (maxTime, len(categories)) )

  if params['category'] == 'all':
    catIdx = range(len(categories))
  else:
    catIdx = [i for i in range(len(categories)) if categories[i] == params['category']]

  for i in catIdx:
    groundTruthFile = params['groundTruthDir'] + '/' + categories[i] + '_test_bboxes.txt'
    outputFile = params['outputDir'] + '/' + categories[i] + '.out'
    performance = evaluateCategory(scoredDetections, i, maxTime, groundTruthFile, outputFile)
import os,sys
import utils as cu

if __name__ == "__main__":
  params = cu.loadParams("detectionsFile outputDir")
  f = open(params['detectionsFile'])
  line = f.readline()
  img = ''
  imgOut = open(params['outputDir'] + '/tmp.region_rank','w')
  while line != '':
    parts = line.split()
    if parts[0] != img:
      imgOut.close()
      imgOut = open(params['outputDir'] + '/' + parts[0] + '.region_rank','w')
      img = parts[0]
    imgOut.write(line)
    line = f.readline()
  imgOut.close()
  f.close()
Exemplo n.º 9
0
        smap[ox - 1, oy - 1] = -20
        plt.imshow(smap)
        plt.savefig('/home/caicedo/data/rcnn/masksOut/' + image + '.png',
                    bbox_inches='tight')


########################################
## MAIN PROGRAM
########################################
if __name__ == "__main__":
    MIN_AREA = 99.0 * 99.0
    MAX_AREA = 227.0 * 227.0
    CONV_LAYER = 'conv3'
    ## Main Program Parameters
    params = cu.loadParams(
        "modelFile testImageList proposalsFile featuresDir featuresExt threshold outputDir"
    )
    model = det.createDetector('linear')
    model.load(params['modelFile'])
    imageList = [x.replace('\n', '') for x in open(params['testImageList'])]
    proposals = mk.loadBoxIndexFile(params['proposalsFile'])
    threshold = float(params['threshold'])
    ## Make detections and transfer scores
    projector = PredictionsToImagePlane(proposals, CONV_LAYER, MIN_AREA,
                                        MAX_AREA, 0.7)
    results = detectObjects(model, imageList, params['featuresDir'],
                            params['featuresExt'], -10.0, projector)
    out = open(params['outputDir'], 'w')
    for r in results:
        out.write(' '.join(map(str, r)) + ' 0\n')
    out.close()
      prec, recall = eval.computePrecisionRecall(numPositives, results['tp'], results['fp'], output)
    else:
      prec, recall = eval.computePrecisionRecall(numPositives, results['tp'], results['fp'])
    performance.append( [prec, recall] )
    T += 1
  return performance

def saveTimeResults(categories, results, outputFile):
  out = open(outputFile,'w')
  out.write(' '.join(categories) + '\n')
  for i in range(results.shape[0]):
    r = results[i,:].tolist()
    out.write(' '.join(map(str,r)) + '\n')

if __name__ == "__main__":
  params = cu.loadParams('relationFeaturesDir imageList maxTime groundTruthDir outputDir category')
  images = [x.strip() for x in open(params['imageList'])]
  maxTime = int(params['maxTime'])
  step = 3
  categories, categoryIndex = getCategories()
  #ranking = CenterToEdgesDetector(maxTime, categoryIndex)
  #ranking = BigestToSmallestArea(maxTime, categoryIndex)
  ranking = Objectness(maxTime, categoryIndex)
  scoredDetections = loadDetections(images, params['relationFeaturesDir'], ranking)
  
  P = np.zeros( (maxTime/step, len(categories)) )
  R = np.zeros( (maxTime/step, len(categories)) )

  if params['category'] == 'all':
    catIdx = range(len(categories))
  else:
Exemplo n.º 11
0
import os,sys
import utils as cu
import libDetection as det
import numpy as np

if __name__ == "__main__":
  params = cu.loadParams('boxesFile minSize outputFile')
  boxes = [x.split() for x in open(params['boxesFile'])]
  minA = float(params['minSize'])**2
  images = {}
  found = set()
  for box in boxes:
    a = det.area( map(int,box[1:]) )
    if a >= minA:
      try:
        images[ box[0] ].append(box[1:])
      except:
        images[ box[0] ] = [box[1:]]
    found.add(box[0])
  # Add records for images that do not have enough area to comply with the filter      
  missing = found.symmetric_difference( images.keys() )
  missing = [b for b in boxes if b[0] in missing]
  allAreas = {}
  for m in missing:
      img = m[0]
      try:
          allAreas[img]['box'].append( m[1:] )
          allAreas[img]['area'].append( det.area( map(int,m[1:]) ) )
      except:
          allAreas[img] = { 'box':[m[1:]], 'area':[det.area( map(int,m[1:]) )] }
  for img in allAreas.keys():
Exemplo n.º 12
0
import os, sys
from PIL import Image
import utils as cu
import numpy as np


def findNearestNeighbor(H, i):
    J = np.tile(H[i, :], (H.shape[0], 1))
    R = np.sum(np.abs(J - H), axis=1)
    R[i] = np.inf
    return np.argmin(R), np.min(R)


params = cu.loadParams('imageDir')
dir = params['imageDir']
allImages = os.listdir(dir)
H = np.zeros((len(allImages), 768))
print 'Scanning', len(allImages), 'images'
imgs = 0
for f in allImages:
    try:
        im = Image.open(dir + '/' + f)
        h = np.asarray(im.histogram())
        if len(h) == 256:
            H[imgs, :] = np.tile(np.asarray(h), (1, 3))
        else:
            H[imgs, :] = np.asarray(h)
        imgs += 1
    except:
        print 'Problems with', f
Exemplo n.º 13
0
                    bestOverlap = ov
                    bestIdx = idx
            idx += 1
        pos[i, :] = allPos[bestIdx, :]
        posIdx.append(allPosIdx[bestIdx])
    print 'Positive Matrix with High Overlaping Detections (' + str(
        pos.shape[0]) + ' instances)'
    return (pos, posIdx, ari, osi)


########################################
## MAIN PROGRAM
########################################
if __name__ == "__main__":
    params = cu.loadParams(
        'detectionsFile logFile topKParameter trainingList featuresDir featuresExt modelOut cost maxNegOverlap iterations'
    )
    trainingList = [x.replace('\n', '') for x in open(params['trainingList'])]
    cost = float(params['cost'])
    maxNegOverlap = float(params['maxNegOverlap'])
    topK = int(params['topKParameter'])
    if os.path.isfile(params['logFile']):
        # Positives with High Overlap can be found in log file
        logData = [x.split() for x in open(params['logFile'])]
        positives = buildDataSetWithHighOverlap(params['detectionsFile'],
                                                logData, topK,
                                                params['featuresDir'],
                                                params['featuresExt'])
    else:
        # Positives from top detections
        detectionsData = [x.split() for x in open(params['detectionsFile'])]
Exemplo n.º 14
0
    i = 0
    outputFile = open(outputDir + '/' + category + '.idx', 'w')
    for r in result:
        featureMatrix[i:i + r[0].shape[0]] = r[0]
        for box in r[1]:
            outputFile.write(box[0] + ' ' +
                             ' '.join(map(str, map(int, box[1:]))) + '\n')
        i += r[0].shape[0]
    outputFile.close()
    cu.saveMatrix(featureMatrix, outputDir + '/' + category + '.' + featExt)
    print 'Total of', nBoxes, 'positive examples collected for', category


if __name__ == "__main__":
    params = cu.loadParams(
        "imageList featuresDir groundTruthFile outputDir featuresExt category operation"
    )
    groundTruths = cu.loadBoxIndexFile(params['groundTruthFile'])
    imageList = [x.replace('\n', '') for x in open(params['imageList'])]
    operator = None
    if params['operation'] == 'big':
        operator = big
    elif params['operation'] == 'tight':
        operator = tight
    elif params['operation'] == 'inside':
        operator = inside
    elif params['operation'] == 'background':
        operator = background
    else:
        print 'Select a valid operation: [big | tight | inside | background]'
        sys.exit()
Exemplo n.º 15
0
        writeF = lambda x, y, b: x
    detectionsList = []
    for data in result:
        img, filteredBoxes, filteredScores = data
        for i in range(len(filteredBoxes)):
            b = filteredBoxes[i]
            writeF(img, filteredScores[i], b)
            detectionsList.append(
                [img, filteredScores[i], b[0], b[1], b[2], b[3], b[4]])
    if outputFile != None:
        outf.close()
    return detectionsList


########################################
## MAIN PROGRAM
########################################
if __name__ == "__main__":
    ## Main Program Parameters
    params = cu.loadParams(
        "modelType modelFile testImageList featuresDir featuresExt maxOverlap threshold outputFile"
    )
    model = det.createDetector(params['modelType'])
    model.load(params['modelFile'])
    imageList = [x.replace('\n', '') for x in open(params['testImageList'])]
    maxOverlap = float(params['maxOverlap'])
    threshold = float(params['threshold'])
    detectObjects(model, imageList, params['featuresDir'],
                  params['featuresExt'], maxOverlap, threshold,
                  params['outputFile'])
Exemplo n.º 16
0
########################################
def detectObjects(imageList, featuresDir, indexType, groundTruthDir, outputDir):
  maxOverlap = 0.3
  categories, catIndex = bse.categoryIndex(indexType)
  task = SoftmaxDetector(maxOverlap, catIndex)
  result = processData(imageList, featuresDir, 'prob', task)
  # Collect detection results after NMS
  detections = dict([ (c,[]) for c in catIndex])
  for res in result:
    for idx in catIndex:
      img, filteredBoxes, filteredScores = res[idx]
      for j in range(len(filteredBoxes)):
        detections[idx].append( [img, filteredScores[j]] + filteredBoxes[j] )
  # Evaluate results for each category independently
  for idx in catIndex:
    groundTruthFile = groundTruthDir + '/' + categories[idx] + '_test_bboxes.txt'
    output = outputDir + '/' + categories[idx] + '.out'
    detections[idx].sort(key=lambda x:x[1], reverse=True)
    gtBoxes = [x.split() for x in open(groundTruthFile)]
    numPositives = len(gtBoxes)
    groundTruth = eval.loadGroundTruthAnnotations(gtBoxes)
    results = eval.evaluateDetections(groundTruth, detections[idx], 0.5)
    prec, recall = eval.computePrecisionRecall(numPositives, results['tp'], results['fp'], output)

if __name__ == "__main__":
  params = cu.loadParams('imageList scoresDir indexType groundTruthDir outputDir')
  imageList = [x.strip() for x in open(params['imageList'])]
  imageList = imageList
  print 'Ready to process',len(imageList)
  detectObjects(imageList, params['scoresDir'], params['indexType'], params['groundTruthDir'], params['outputDir'])
      if truePos[0] == imgName:
        ov = det.IoU(box,map(float,truePos[1:5]))
        if ov > bestOverlap:
          bestOverlap = ov
          bestIdx = idx
      idx += 1
    pos[i,:] = allPos[bestIdx,:]
    posIdx.append(allPosIdx[bestIdx])
  print 'Positive Matrix with High Overlaping Detections ('+str(pos.shape[0])+' instances)'
  return (pos,posIdx,ari,osi)

########################################
## MAIN PROGRAM
########################################
if __name__ == "__main__":
  params = cu.loadParams('detectionsFile logFile topKParameter trainingList featuresDir featuresExt modelOut cost maxNegOverlap iterations')
  trainingList = [x.replace('\n','') for x in open(params['trainingList'])]
  cost = float(params['cost'])
  maxNegOverlap = float(params['maxNegOverlap'])
  topK = int(params['topKParameter'])
  if os.path.isfile(params['logFile']):
    # Positives with High Overlap can be found in log file
    logData = [x.split() for x in open(params['logFile'])]
    positives = buildDataSetWithHighOverlap(params['detectionsFile'],logData,topK,params['featuresDir'],params['featuresExt'])
  else:
    # Positives from top detections
    detectionsData = [x.split() for x in open(params['detectionsFile'])]
    positives = buildDataSetWithTopDetections(detectionsData,topK,params['featuresDir'],params['featuresExt'])
  # Run the training algorithm
  iterations = int(params['iterations'])+1
  for i in range(iterations):
Exemplo n.º 18
0
        F[:, 0:-1] = X
        return np.dot(F, self.M.T)

    def sigmoidValues(self, X):
        return 1 / (1 + np.exp(-self.decisionFunction(X)))


class CategoryScores():
    def __init__(self, integratedModel, outDir):
        self.model = integratedModel
        self.outDir = outDir

    def run(self, img, features, bboxes):
        print img
        scores = self.model.sigmoidValues(features)
        cu.saveMatrix(scores, self.outDir + '/' + img + '.sigmoid_scores')
        return


def extractFeatures(model, imageList, featuresDir, featuresExt):
    task = CategoryScores(model, featuresDir)
    result = processData(imageList, featuresDir, featuresExt, task)


if __name__ == "__main__":
    params = cu.loadParams('modelsDir imageList featuresDir featuresExt')
    im = IntegratedModel(params['modelsDir'])
    imageList = [x.replace('\n', '') for x in open(params['imageList'])]
    extractFeatures(im, imageList, params['featuresDir'],
                    params['featuresExt'])
import os,sys
import utils as cu
import scipy.io
import h5py
import numpy as np
import libDetection as det

params = cu.loadParams('rcnnImdbFile MatlabScoresDir outputDir doNMS')

imdb = h5py.File(params['rcnnImdbFile'])
print 'Images:',imdb['imdb']['image_ids']
images = [u''.join(unichr(c) for c in imdb[o]) for o in imdb['imdb']['image_ids'][0]]
doNMS = params['doNMS'] != 'noNMS'

for f in os.listdir(params['MatlabScoresDir']):
  if f.endswith('__all.mat') and f.find('_boxes_') != -1:
    nameParts = f.split('_')
    out = open(params['outputDir'] + '/' + nameParts[0] + '_' + nameParts[1] + '.out', 'w')
    data = scipy.io.loadmat(params['MatlabScoresDir'] + '/' + f)
    print nameParts[0:2]
    for i in range(data['boxes'].shape[0]):
      detections = data['boxes'][i][0]
      img = str(images[i])
      boxes = [ box[0:4].tolist() for box in detections ]
      scores = [ box[-1] for box in detections ]
      if len(boxes) == 0: 
        continue
      if doNMS:
        boxes, scores = det.nonMaximumSuppression(boxes, scores, 0.3)
      for j in range(len(boxes)):
        box = boxes[j]
Exemplo n.º 20
0
def getCategories():
    cat = 'aeroplane bicycle bird boat bottle bus car cat chair cow diningtable dog horse motorbike person pottedplant sheep sofa train tvmonitor'.split(
    )
    categories = {}
    id = 0
    for c in cat:
        categories[c + '_big'] = id
        id += 1
        categories[c + '_inside'] = id
        id += 1
    return categories


if __name__ == "__main__":
    params = cu.loadParams('relationsAnnotations matFilesDir outDir')
    relations = loadBoxIndexFile(params['relationsAnnotations'])
    print 'Relations loaded'
    categories = getCategories()
    counter = 0
    for f in os.listdir(params['matFilesDir']):
        if not f.endswith('.mat') or f == 'gt_pos_layer_5_cache.mat': continue
        counter += 1
        if os.path.isfile(params['outDir'] + '/' + f): continue
        img = f.replace('.mat', '')
        print counter, img
        mat = scipy.io.loadmat(params['matFilesDir'] + '/' + f)
        idx = mat['gt'] == 0
        mat['feat'] = mat['feat'][idx[:, 0], :]
        mat['gt'] = mat['gt'][idx[:, 0], :]
        mat['boxes'] = mat['boxes'][idx[:, 0], :]
Exemplo n.º 21
0
        candidates = []
        for j in range(len(inside)):
            n = inside[j]
            r = [det.IoU(n[1:], t[1:]), det.overlap(t[1:], n[1:])]
            if 0.8 >= r[0] and r[1] >= 0.8:
                s = np.exp(-dist(idealMatch, r))
                candidates.append([j, s, n[0], r])
        if len(candidates) > 0:
            candidates.sort(key=lambda x: x[1] + x[2], reverse=True)
            for k in range(min(MAX_NUMBER_OF_PARTS, len(candidates))):
                layouts[i].addPart(inside[candidates[k][0]], candidates[k][-1])
    layouts.sort(key=lambda x: x.getScore(), reverse=True)
    return layouts


params = cu.loadParams(
    'bigDetections tightDetections insideDetections imageDir outputDir')

big = cu.loadBoxIndexFile(params['bigDetections'])
tight = cu.loadBoxIndexFile(params['tightDetections'])
inside = cu.loadBoxIndexFile(params['insideDetections'])

print 'Images:', len(big), len(tight), len(inside)

allLayouts = []
for k in big.keys():
    layouts = findBigMatches(k, big[k], tight[k])
    layouts = findInsideMatches(inside[k], layouts)
    allLayouts += [layouts[0]]

allLayouts.sort(key=lambda x: x.getScore(), reverse=True)
matchCounter = 0
    t = layouts[i].root
    candidates = []
    for j in range(len(inside)):
      n = inside[j]
      r = [ det.IoU(n[1:], t[1:]), det.overlap(t[1:], n[1:]) ]
      if 0.8 >= r[0] and r[1] >= 0.8:
        s = np.exp( -dist(idealMatch, r) )
        candidates.append( [j,s,n[0],r] )
    if len(candidates) > 0:
      candidates.sort(key=lambda x:x[1]+x[2],reverse=True)
      for k in range( min(MAX_NUMBER_OF_PARTS,len(candidates)) ):
        layouts[i].addPart( inside[ candidates[k][0] ], candidates[k][-1] )
  layouts.sort(key=lambda x: x.getScore(), reverse=True)
  return layouts

params = cu.loadParams('bigDetections tightDetections insideDetections imageDir outputDir')

big = cu.loadBoxIndexFile( params['bigDetections'] )
tight = cu.loadBoxIndexFile( params['tightDetections'] )
inside = cu.loadBoxIndexFile( params['insideDetections'] )

print 'Images:',len(big),len(tight),len(inside)

allLayouts = []
for k in big.keys():
  layouts = findBigMatches(k, big[k], tight[k])
  layouts = findInsideMatches(inside[k], layouts)
  allLayouts += [ layouts[0] ]

allLayouts.sort(key=lambda x: x.getScore(), reverse=True)
matchCounter = 0
Exemplo n.º 23
0
import os, sys
import utils as cu
import libDetection as ldet
import numpy as np

params = cu.loadParams('scoresFile groundTruth relation output')
scores = [x.split() for x in open(params['scoresFile'])]
ground = cu.loadBoxIndexFile(params['groundTruth'])
scores.sort(key=lambda x: float(x[1]), reverse=True)

if params['relation'] == 'big':
    operator = lambda x, y: np.exp(-((1.0 - ldet.overlap(x, y))**2 +
                                     (0.25 - ldet.IoU(x, y))**2)) >= 0.7
if params['relation'] == 'inside':
    operator = lambda x, y: np.exp(-((1.0 - ldet.overlap(y, x))**2 +
                                     (0.25 - ldet.IoU(x, y))**2)) >= 0.7
if params['relation'] == 'tight':
    operator = lambda x, y: ldet.IoU(x, y) >= 0.5

out = open(params['output'], 'w')
for s in scores:
    box = map(float, s[2:7])
    img = s[0]
    try:
        gtBoxes = ground[img]
    except:
        gtBoxes = []
    match = '0'
    for gt in gtBoxes:
        if operator(box, gt):
            match = '1'
def selectBestBoxes(detections, groundTruth, minOverlap):
  candidates = []
  for d in detections:
    try: boxes = groundTruth[d[0]]
    except: continue
    bestIoU = 0.0
    for gt in boxes:
      iou = det.IoU(d[2:6],gt)
      if iou > bestIoU:
        bestIoU = iou
    print bestIoU
    if bestIoU > minOverlap:
      candidates.append(d)
  return candidates

def saveCandidates(candidates, output):
  out = open(output, 'w')
  for k in candidates:
    out.write(k[0] + ' ' + ' '.join(map(str, map(int, k[2:6]) ) ) + '\n')
  out.close()

if __name__ == "__main__":
  params = cu.loadParams("detectionsFile groundTruths output")
  detectionsData = [x.split() for x in open(params['detectionsFile'])]
  detections = eval.loadDetections(detectionsData)
  groundTruth = cu.loadBoxIndexFile(params['groundTruths'])
  candidates = selectBestBoxes(detections, groundTruth, 0.5)
  print 'Selected candidates:', len(candidates)
  saveCandidates(candidates, params['output'])
Exemplo n.º 25
0
        performance.append([prec, recall])
        T += 1
    return performance


def saveTimeResults(categories, results, outputFile):
    out = open(outputFile, 'w')
    out.write(' '.join(categories) + '\n')
    for i in range(results.shape[0]):
        r = results[i, :].tolist()
        out.write(' '.join(map(str, r)) + '\n')


if __name__ == "__main__":
    params = cu.loadParams(
        'relationFeaturesDir imageList maxTime groundTruthDir outputDir category'
    )
    images = [x.strip() for x in open(params['imageList'])]
    maxTime = int(params['maxTime'])
    step = 3
    categories, categoryIndex = getCategories()
    #ranking = CenterToEdgesDetector(maxTime, categoryIndex)
    #ranking = BigestToSmallestArea(maxTime, categoryIndex)
    ranking = Objectness(maxTime, categoryIndex)
    scoredDetections = loadDetections(images, params['relationFeaturesDir'],
                                      ranking)

    P = np.zeros((maxTime / step, len(categories)))
    R = np.zeros((maxTime / step, len(categories)))

    if params['category'] == 'all':
Exemplo n.º 26
0
import os, sys
import utils as cu
import Image

params = cu.loadParams('positiveBoxes negativeBoxes imgDir output')

pos = [x.split() for x in open(params['positiveBoxes'])]
neg = [x.split() for x in open(params['negativeBoxes'])]

boxes = {}
for p in pos:
    try:
        boxes[p[0]].append(p[1:] + [0])
    except:
        boxes[p[0]] = [p[1:] + [0]]

for n in neg:
    try:
        boxes[n[0]].append(n[1:] + [1])
    except:
        boxes[n[0]] = [p[1:] + [1]]

flipLabel = lambda x: 0 if x == 1 else 1
counter = 0
out = open(params['output'], 'w')
for img in boxes.keys():
    out.write('# ' + str(counter) + '\n')
    imPath = params['imgDir'] + '/' + img + '.jpg'
    im = Image.open(imPath)
    w, h = im.size
    out.write(imPath + '\n3\n' + str(w) + '\n' + str(h) + '\n' +
import sys,os
import utils as cu

params = cu.loadParams('fullList positivesList output')

full = [x for x in open(params['fullList'])]
positives = [x for x in open(params['positivesList'])]
out = open(params['output'],'w')
for r in full:
  if r not in positives:
    out.write(r)
out.close()
Exemplo n.º 28
0
import os,sys
import utils as cu
import libDetection as ldet
import numpy as np

params = cu.loadParams('scoresFile groundTruth relation output')
scores = [x.split() for x in open(params['scoresFile'])]
ground = cu.loadBoxIndexFile(params['groundTruth'])
scores.sort(key=lambda x:float(x[1]), reverse=True)

if params['relation'] == 'big': 
  operator = lambda x,y: np.exp( -( (1.0-ldet.overlap(x,y))**2 + (0.25-ldet.IoU(x,y))**2 ) ) >= 0.7
if params['relation'] == 'inside': 
  operator = lambda x,y: np.exp( -( (1.0-ldet.overlap(y,x))**2 + (0.25-ldet.IoU(x,y))**2 ) ) >= 0.7
if params['relation'] == 'tight': 
  operator = lambda x,y: ldet.IoU(x,y) >= 0.5

out = open(params['output'],'w')
for s in scores:
  box = map(float,s[2:7])
  img = s[0]
  try: gtBoxes = ground[img]
  except: gtBoxes = []
  match = '0'
  for gt in gtBoxes:
    if operator(box,gt):
      match = '1'
  out.write(' '.join(s) + ' ' + match + '\n')
out.close()
Exemplo n.º 29
0
import os, sys
import utils as cu
import numpy as np

params = cu.loadParams('matrix1 matrix2 output')
Ma, Ia = cu.loadMatrixAndIndex(params['matrix1'])
Mb, Ib = cu.loadMatrixAndIndex(params['matrix2'])

extension = params['matrix1'].split('.')[-1]
cu.saveMatrix(np.concatenate((Ma, Mb)), params['output'] + '.' + extension)
out = open(params['output'] + '.idx', 'w')
for r in Ia:
    out.write(' '.join(r) + '\n')
for r in Ib:
    out.write(' '.join(r) + '\n')
out.close()
Exemplo n.º 30
0
  result = processData(imageList,featuresDir,featuresExt,task)
  if outputFile != None:
    outf = open(outputFile,'w')
    writeF = lambda x,y,b: outf.write(x + ' {:.8f} {:.0f} {:.0f} {:.0f} {:.0f} {:.0f}\n'.format(y,b[0],b[1],b[2],b[3],b[4]))
  else:
    writeF = lambda x,y,b: x
  detectionsList = []
  for data in result:
    img,filteredBoxes,filteredScores = data
    for i in range(len(filteredBoxes)):
      b = filteredBoxes[i]
      writeF(img,filteredScores[i],b)
      detectionsList.append( [img,filteredScores[i],b[0],b[1],b[2],b[3],b[4]] )
  if outputFile != None:
    outf.close()
  return detectionsList

########################################
## MAIN PROGRAM
########################################
if __name__ == "__main__":
  ## Main Program Parameters
  params = cu.loadParams("modelType modelFile testImageList featuresDir featuresExt maxOverlap threshold outputFile")
  model = det.createDetector(params['modelType'])
  model.load(params['modelFile'])
  imageList = [x.replace('\n','') for x in open(params['testImageList'])]
  maxOverlap = float(params['maxOverlap'])
  threshold = float(params['threshold'])
  detectObjects(model,imageList,params['featuresDir'],params['featuresExt'],maxOverlap,threshold,params['outputFile'])

import os,sys
import utils as cu
import libDetection as det
import numpy as np
import pickle

params = cu.loadParams('scoresFile outputDir category')

if os.path.isfile(params['scoresFile']+'.p'):
  print 'Loading pickled data'
  imgs = pickle.load( open(params['scoresFile']+'.p', 'rb') )
else:
  imgs = {}
  data = open(params['scoresFile'])
  l = data.readline()
  counter = 0
  while l != '':
    counter += 1
    d = l.split()
    rec = {'b': map(float,d[1:5]), 's':map(float,d[5:])}
    try: 
      imgs[d[0]]['boxes'].append(rec['b'])
      imgs[d[0]]['scores'] = np.vstack( (imgs[d[0]]['scores'], np.array(rec['s'])) )
    except: 
      imgs[d[0]] = {'boxes':[], 'scores':[]}
      imgs[d[0]]['boxes'] = [ rec['b'] ]
      imgs[d[0]]['scores'] = np.array(rec['s'])
    l = data.readline()
    if counter % 100000 == 0: print counter
  data.close()
  
Exemplo n.º 32
0
    # Collect detection results after NMS
    detections = dict([(c, []) for c in catIndex])
    for res in result:
        for idx in catIndex:
            img, filteredBoxes, filteredScores = res[idx]
            for j in range(len(filteredBoxes)):
                detections[idx].append([img, filteredScores[j]] +
                                       filteredBoxes[j])
    # Evaluate results for each category independently
    for idx in catIndex:
        groundTruthFile = groundTruthDir + '/' + categories[
            idx] + '_test_bboxes.txt'
        output = outputDir + '/' + categories[idx] + '.out'
        detections[idx].sort(key=lambda x: x[1], reverse=True)
        gtBoxes = [x.split() for x in open(groundTruthFile)]
        numPositives = len(gtBoxes)
        groundTruth = eval.loadGroundTruthAnnotations(gtBoxes)
        results = eval.evaluateDetections(groundTruth, detections[idx], 0.5)
        prec, recall = eval.computePrecisionRecall(numPositives, results['tp'],
                                                   results['fp'], output)


if __name__ == "__main__":
    params = cu.loadParams(
        'imageList scoresDir indexType groundTruthDir outputDir')
    imageList = [x.strip() for x in open(params['imageList'])]
    imageList = imageList
    print 'Ready to process', len(imageList)
    detectObjects(imageList, params['scoresDir'], params['indexType'],
                  params['groundTruthDir'], params['outputDir'])
Exemplo n.º 33
0
                    score = records[key]
                except:
                    score = -10.0
                self.scores[img][i, fileIdx] = score

    def saveDB(self, outputDir):
        for img in self.imgBoxes.keys():
            data = {'boxes': self.imgBoxes[img], 'scores': self.scores[img]}
            scipy.io.savemat(outputDir + '/' + img + '.mat',
                             data,
                             do_compression=True)
        out = open(outputDir + '/categories.txt', 'w')
        for c in self.categories:
            out.write(c + '\n')
        out.close()


if __name__ == "__main__":
    params = cu.loadParams('scoresDirectory proposalsFile outputDir')
    cu.mem('Program started')
    lap = tic()
    builder = DBBuilder(params['scoresDirectory'], params['proposalsFile'])
    lap = toc('Proposals loaded', lap)
    cu.mem('DB initialized')
    builder.parseDir()
    lap = toc('Directory parsed', lap)
    cu.mem('All files read')
    builder.saveDB(params['outputDir'])
    lap = toc('Database saved', lap)
    cu.mem('Program ends')
Exemplo n.º 34
0
import os, sys
import utils as cu
import scipy.io
import h5py
import numpy as np
import libDetection as det

params = cu.loadParams('rcnnImdbFile MatlabScoresDir outputDir doNMS')

imdb = h5py.File(params['rcnnImdbFile'])
print 'Images:', imdb['imdb']['image_ids']
images = [
    u''.join(unichr(c) for c in imdb[o]) for o in imdb['imdb']['image_ids'][0]
]
doNMS = params['doNMS'] != 'noNMS'

for f in os.listdir(params['MatlabScoresDir']):
    if f.endswith('__all.mat') and f.find('_boxes_') != -1:
        nameParts = f.split('_')
        out = open(
            params['outputDir'] + '/' + nameParts[0] + '_' + nameParts[1] +
            '.out', 'w')
        data = scipy.io.loadmat(params['MatlabScoresDir'] + '/' + f)
        print nameParts[0:2]
        for i in range(data['boxes'].shape[0]):
            detections = data['boxes'][i][0]
            img = str(images[i])
            boxes = [box[0:4].tolist() for box in detections]
            scores = [box[-1] for box in detections]
            if len(boxes) == 0:
                continue
import os,sys
import utils as cu
import libDetection as det

import cPickle as pickle
import scipy.io
import numpy as np

params = cu.loadParams('dbDir relationsFile outputDir')

archive = {}

T = pickle.load( open(params['dbDir']+'/db.idx','rb') )
M = scipy.io.loadmat(params['dbDir']+'/db.cache')

archive['images'] = T.keys()
index = np.zeros( (len(T), 2), np.int )
for i in range(len(archive['images'])):
  idx = T[archive['images'][i]]
  index[i,0] = idx['s'] + 1
  index[i,1] = idx['e']
archive['index'] = index

data = [x.split() for x in open(params['relationsFile'])]
categories = set()
labels = {}
for d in data:
  r = [d[1]] + map(float,d[2:])
  try: labels[d[0]].append( r )
  except: labels[d[0]] =  [ r ]
  categories.add(d[1])
    idx = range(len(data['boxes']))
    boxes = [data['boxes'][i] for i in idx if data[ranking][i] > float('-inf')]
    scores = [data[ranking][i] for i in idx if data[ranking][i] > float('-inf')]
    if len(boxes) > 0:
      fBoxes, fScores = det.nonMaximumSuppression(boxes, scores, 0.3)
      for i in range(len(fBoxes)):
        detections.append( [img, fScores[i]] + fBoxes[i] )
  detections.sort(key=lambda x:x[1], reverse=True)
  gtBoxes = [x.split() for x in open(groundTruthFile)]
  numPositives = len(gtBoxes)
  groundTruth = eval.loadGroundTruthAnnotations(gtBoxes)
  results = eval.evaluateDetections(groundTruth, detections, 0.5)
  if output is not None:
    output = output + '.' + ranking
  prec, recall = eval.computePrecisionRecall(numPositives, results['tp'], results['fp'], output)
  return prec, recall

if __name__ == "__main__":
  params = cu.loadParams('testMemDir groundTruthFile outputDir')

  scoredDetections = loadScores(params['testMemDir'], -1)
  
  groundTruthFile = params['groundTruthFile']
  outputFile = params['outputDir'] + '/' + 'result.out'
  pl,rl = evaluateCategory(scoredDetections, 'landmarks', groundTruthFile, outputFile)
  line = lambda x,y,z: x + '\t{:5.3f}\t{:5.3f}\n'.format(y,z)
  out = open(params['outputDir'] + '/evaluation.txt','w')
  out.write('\tPrecision\tRecall\n')
  out.write(line('Landmarks',pl,rl))
  out.close()
Exemplo n.º 37
0
import os, sys
import utils as cu
import libDetection as det

import cPickle as pickle
import scipy.io
import numpy as np

params = cu.loadParams('dbDir relationsFile outputDir')

archive = {}

T = pickle.load(open(params['dbDir'] + '/db.idx', 'rb'))
M = scipy.io.loadmat(params['dbDir'] + '/db.cache')

archive['images'] = T.keys()
index = np.zeros((len(T), 2), np.int)
for i in range(len(archive['images'])):
    idx = T[archive['images'][i]]
    index[i, 0] = idx['s'] + 1
    index[i, 1] = idx['e']
archive['index'] = index

data = [x.split() for x in open(params['relationsFile'])]
categories = set()
labels = {}
for d in data:
    r = [d[1]] + map(float, d[2:])
    try:
        labels[d[0]].append(r)
    except:
      images[k[0]] = [ [k[1]] + map(float,k[2:]) ]
  return images

def getCategories():
  cat = 'aeroplane bicycle bird boat bottle bus car cat chair cow diningtable dog horse motorbike person pottedplant sheep sofa train tvmonitor'.split()
  categories = {}
  id = 0
  for c in cat:
    categories[c + '_big'] = id
    id += 1
    categories[c + '_inside'] = id
    id += 1
  return categories

if __name__ == "__main__":
  params = cu.loadParams('relationsAnnotations matFilesDir outDir')
  relations = loadBoxIndexFile(params['relationsAnnotations'])
  print 'Relations loaded'
  categories = getCategories()
  counter = 0
  for f in os.listdir(params['matFilesDir']):
    if not f.endswith('.mat') or f == 'gt_pos_layer_5_cache.mat': continue
    counter += 1
    if os.path.isfile(params['outDir'] + '/' + f): continue
    img = f.replace('.mat','')
    print counter,img
    mat = scipy.io.loadmat(params['matFilesDir'] + '/' + f)
    idx = mat['gt'] == 0
    mat['feat'] = mat['feat'][idx[:,0],:]
    mat['gt'] = mat['gt'][idx[:,0],:]
    mat['boxes'] = mat['boxes'][idx[:,0],:]
Exemplo n.º 39
0
    # Expected Format: k:v!k:v!
    params = params.split('!')
    result = {}
    for p in params:
        if p != '':
            k, v = p.split(':')
            result[k] = v
    return result


########################################
## MAIN PROGRAM
########################################
if __name__ == "__main__":
    params = cu.loadParams(
        "modelType modelParams positivesFeatures trainingList featuresDir modelOut overlap iterations"
    )
    featuresExt = params['positivesFeatures'].split('.')[-1]
    trainingList = [x.replace('\n', '') for x in open(params['trainingList'])]
    maxNegOverlap = float(params['overlap'])
    iterations = int(params['iterations']) + 1
    positives = readPositivesData(params['positivesFeatures'])
    args = parseModelParams(params['modelParams'])
    print " ++ LEARNING", params['modelType'], "MODEL WITH ARGS:", params[
        'modelParams'], " ++ "
    for i in range(iterations):
        mainLoop(params['modelType'], args, positives, trainingList,
                 params['featuresDir'], featuresExt, params['modelOut'],
                 maxNegOverlap, i)
    os.system('rm ' + params['modelOut'] + '.hards')
Exemplo n.º 40
0
def mapToGroundTruth(img, box, groundTruths):
  result = {}
  for cat in groundTruths.keys():
    try: annotations = groundTruths[cat][img]
    except: continue
    for gt in annotations:
      iou = det.IoU(box, gt)
      rel = findRelation(box, gt, iou)
      if rel != None:
        result[cat+'_'+rel] = iou
  #if len(result.keys()) > 1:
  #  print result
  return result

params = cu.loadParams('regionsFile groundTruthDir output')
regions,headers = loadRegionsFile(params['regionsFile'])
print 'Images:',len(regions)
groundTruths = loadAllGroundTruths(params['groundTruthDir'])
out = open(params['output'],'w')

catNames = groundTruths.keys()
relNames = ['_tight','_big','_inside']
catNames.sort()
categories = []
for r in relNames:
  for c in catNames:
    categories.append(c+r)
labels = dict([ (categories[i],i+1) for i in range(len(categories)) ])

Exemplo n.º 41
0
    elif t: result = {'tight':'tp'}
    elif i: result = {'tight':'fp', 'inside':'fn'}
    else:   result = {'tight':'fp'}
  elif boxData['type'] == 'inside' and float(boxData['score']) >= threshold:
    if b:   result = {'inside':'fp', 'big':'fn'}
    elif t: result = {'inside':'fp', 'tight':'fn'}
    elif i: result = {'inside':'tp'}
    else:   result = {'inside':'fp'}
  else:
    result = {boxData['type']:'tn'}
  
  return result
  

if __name__ == "__main__":
  params = cu.loadParams("bigFile tightFile insideFile groundTruthsFile threshold outputDir")

  big = readScoresFile(params['bigFile'])
  tight = readScoresFile(params['tightFile'])
  inside = readScoresFile(params['insideFile'])
  threshold = float(params['threshold'])
  results = mergeScores(big,tight,inside)

  groundTruths = cu.loadBoxIndexFile(params['groundTruthsFile'])

  counts = {'big': {'tp':0,'tn':0,'fp':0,'fn':0}, 'tight':{'tp':0,'tn':0,'fp':0,'fn':0}, 'inside':{'tp':0,'tn':0,'fp':0,'fn':0}}
  allBoxes = 0
  for img in results.keys():
    try:
      boxes = groundTruths[img]
      imageOK = True
  return result

def reformatGroundTruth(gt, category):
  result = []
  for img in gt.keys():
    for box in gt[img]:
      result.append( [img, category + '_tight'] + box )
  return result

def saveResults(outputFile, results):
  outputFile = open(outputFile,'w')
  for r in results:
    outputFile.write(r[0] + ' ' + r[1] + ' ' + ' '.join(map(str,map(int,r[2:]))) + '\n')
  outputFile.close()

if __name__ == "__main__":
  params = cu.loadParams("proposalsFile groundTruthDir outputFile")
  proposals = cu.loadBoxIndexFile(params['proposalsFile'])
  records = []
  files = os.listdir(params['groundTruthDir'])
  files.sort()
  for f in files:
    category = f.split('_')[0]
    print category
    groundTruth = cu.loadBoxIndexFile(params['groundTruthDir'] + '/' + f)
    records += selectRegions(proposals, groundTruth, category, big)
    records += selectRegions(proposals, groundTruth, category, inside)
    records += reformatGroundTruth(groundTruth, category)
  saveResults(params['outputFile'], records)

Exemplo n.º 43
0
                                                       results['tp'],
                                                       results['fp'])
        performance.append([prec, recall])
    return performance


def saveTimeResults(categories, results, outputFile):
    out = open(outputFile, 'w')
    out.write(' '.join(categories) + '\n')
    for i in range(results.shape[0]):
        r = results[i, :].tolist()
        out.write(' '.join(map(str, r)) + '\n')


if __name__ == "__main__":
    params = cu.loadParams(
        'testMemDir relationFeaturesDir groundTruthDir outputDir category')
    categories, categoryIndex = getCategories()
    scoredDetections, maxTime = loadScores(params['testMemDir'],
                                           params['relationFeaturesDir'],
                                           categoryIndex)

    P = np.zeros((maxTime, len(categories)))
    R = np.zeros((maxTime, len(categories)))

    if params['category'] == 'all':
        catIdx = range(len(categories))
    else:
        catIdx = [
            i for i in range(len(categories))
            if categories[i] == params['category']
        ]
Exemplo n.º 44
0
import os,sys
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import utils as cu

import RLConfig as config

params = cu.loadParams("config caffeLog rlLog outdir")
config.readConfiguration(params["config"])

fig, ax = plt.subplots(nrows=2, ncols=3)
fig.set_size_inches(18.5,10.5)

# Parse Caffe Log
loss = []
for l in open(params['caffeLog']):
  if l.find('loss =') != -1:
    loss.append( float(l.split()[-1]) )
i = np.argmax(loss)
loss[i] = np.average(loss)
ax[0,0].plot(range(len(loss)), loss)
ax[0,0].set_title('QNetwork Loss')

# Parse RL output
avgRewards = []
epochRewards = []
epochRecall = []
epochIoU = []
epochLandmarks = []
Exemplo n.º 45
0
            a = map(int,areas[i])
            smap[ a[1]:a[3], a[0]:a[2] ] += scores[i]
            
        a = fig.add_subplot(1,2,2)
        smap[0,0] = 20
        smap[ox-1,oy-1] = -20
        plt.imshow(smap)
        plt.savefig('/home/caicedo/data/rcnn/masksOut/'+image+'.png',bbox_inches='tight')        

########################################
## MAIN PROGRAM
########################################
if __name__ == "__main__":
    MIN_AREA = 99.0*99.0
    MAX_AREA = 227.0*227.0
    CONV_LAYER = 'conv3'
    ## Main Program Parameters
    params = cu.loadParams("modelFile testImageList proposalsFile featuresDir featuresExt threshold outputDir")
    model = det.createDetector('linear')
    model.load(params['modelFile'])
    imageList = [x.replace('\n','') for x in open(params['testImageList'])]
    proposals = mk.loadBoxIndexFile(params['proposalsFile'])
    threshold = float(params['threshold'])
    ## Make detections and transfer scores
    projector = PredictionsToImagePlane(proposals,CONV_LAYER,MIN_AREA,MAX_AREA,0.7)
    results = detectObjects(model,imageList,params['featuresDir'],params['featuresExt'],-10.0,projector)
    out = open(params['outputDir'],'w')
    for r in results:
        out.write(' '.join(map(str,r))+' 0\n')
    out.close()
Exemplo n.º 46
0
import os, sys
import utils as cu
import scipy.io

if __name__ == "__main__":
    params = cu.loadParams('matFilesDir outFile')
    out = open(params['outFile'], 'w')
    counter = 0
    for f in os.listdir(params['matFilesDir']):
        if not f.endswith('.mat') or f == 'gt_pos_layer_5_cache.mat': continue
        img = f.replace('.mat', '')
        counter += 1
        print counter, img
        mat = scipy.io.loadmat(params['matFilesDir'] + '/' + f)
        idx = mat['gt'] == 0
        mat['boxes'] = mat['boxes'][idx[:, 0], :]
        for i in range(mat['boxes'].shape[0]):
            box = mat['boxes'][i, :].tolist()
            out.write(img + ' ' + ' '.join(map(str, map(int, box))) + '\n')
    out.close()
Exemplo n.º 47
0
import os, sys
import utils as cu

if __name__ == "__main__":
    params = cu.loadParams("detectionsFile outputDir")
    f = open(params['detectionsFile'])
    line = f.readline()
    img = ''
    imgOut = open(params['outputDir'] + '/tmp.region_rank', 'w')
    while line != '':
        parts = line.split()
        if parts[0] != img:
            imgOut.close()
            imgOut = open(
                params['outputDir'] + '/' + parts[0] + '.region_rank', 'w')
            img = parts[0]
        imgOut.write(line)
        line = f.readline()
    imgOut.close()
    f.close()
import os,sys
import utils as cu
import Image

params = cu.loadParams('positiveBoxes negativeBoxes imgDir output')

pos = [x.split() for x in open(params['positiveBoxes'])]
neg = [x.split() for x in open(params['negativeBoxes'])]

boxes = {}
for p in pos:
  try: boxes[p[0]].append(p[1:] + [0])
  except: boxes[p[0]] = [p[1:] + [0]]

for n in neg:
  try: boxes[n[0]].append(n[1:] + [1])
  except: boxes[n[0]] = [p[1:] + [1]]

flipLabel = lambda x: 0 if x == 1 else 1
counter = 0
out = open(params['output'],'w')
for img in boxes.keys():
  out.write('# ' + str(counter) + '\n')
  imPath = params['imgDir'] + '/' + img + '.jpg'
  im = Image.open(imPath)
  w,h = im.size
  out.write(imPath + '\n3\n' + str(w) + '\n' + str(h) + '\n' + str(2*len(boxes[img])) + '\n')
  for b in boxes[img]:
    out.write(str(b[-1]) + ' 1.0 0.0 ' + ' '.join(b[0:4]) + '\n' )
    out.write(str(flipLabel(b[-1])) + ' -1.0 0.0 ' + ' '.join(b[0:4]) + '\n' )
  counter += 1
Exemplo n.º 49
0
        if len(boxes) > 0:
            fBoxes, fScores = det.nonMaximumSuppression(boxes, scores, 0.3)
            for i in range(len(fBoxes)):
                detections.append([img, fScores[i]] + fBoxes[i])
    detections.sort(key=lambda x: x[1], reverse=True)
    gtBoxes = [x.split() for x in open(groundTruthFile)]
    numPositives = len(gtBoxes)
    groundTruth = eval.loadGroundTruthAnnotations(gtBoxes)
    results = eval.evaluateDetections(groundTruth, detections, 0.5)
    if output is not None:
        output = output + '.' + ranking
    prec, recall = eval.computePrecisionRecall(numPositives, results['tp'],
                                               results['fp'], output)
    return prec, recall


if __name__ == "__main__":
    params = cu.loadParams('testMemDir groundTruthFile outputDir')

    scoredDetections = loadScores(params['testMemDir'], -1)

    groundTruthFile = params['groundTruthFile']
    outputFile = params['outputDir'] + '/' + 'result.out'
    pl, rl = evaluateCategory(scoredDetections, 'landmarks', groundTruthFile,
                              outputFile)
    line = lambda x, y, z: x + '\t{:5.3f}\t{:5.3f}\n'.format(y, z)
    out = open(params['outputDir'] + '/evaluation.txt', 'w')
    out.write('\tPrecision\tRecall\n')
    out.write(line('Landmarks', pl, rl))
    out.close()
  print 'Positive Matrix loaded ('+str(pos.shape[0])+' instances)'
  return (pos,posIdx,ari,osi)

def parseModelParams(params):
  # Expected Format: k:v!k:v!
  params = params.split('!')
  result = {}
  for p in params:
    if p != '':
      k,v = p.split(':')
      result[k] = v
  return result

########################################
## MAIN PROGRAM
########################################
if __name__ == "__main__":
  params = cu.loadParams("modelType modelParams positivesFeatures trueObjectBoxesFile trainingList featuresDir modelOut overlap iterations")
  featuresExt = params['positivesFeatures'].split('.')[-1]
  trainingList = [x.replace('\n','') for x in open(params['trainingList'])]
  maxNegOverlap = float(params['overlap'])
  iterations = int(params['iterations'])+1
  positives = readPositivesData(params['positivesFeatures'])
  args = parseModelParams(params['modelParams'])
  print " ++ LEARNING",params['modelType'],"MODEL WITH ARGS:",params['modelParams']," ++ "
  trueObjectBoxes = [x.split() for x in open(params['trueObjectBoxesFile'])]
  for i in range(iterations):
    mainLoop(params['modelType'],args,positives,trueObjectBoxes,trainingList,params['featuresDir'],featuresExt,params['modelOut'],maxNegOverlap,i)
  os.system('rm '+params['modelOut']+'.hards')

Exemplo n.º 51
0
    nBoxes += r[0].shape[0]
    nFeat = r[0].shape[1]
  featureMatrix = np.zeros( (nBoxes,nFeat) )
  i = 0
  outputFile = open(outputDir + '/' + category + '.idx','w')
  for r in result:
    featureMatrix[i:i+r[0].shape[0]] = r[0]
    for box in r[1]:
      outputFile.write(box[0] + ' ' + ' '.join(map(str,map(int,box[1:]))) + '\n')
    i += r[0].shape[0]
  outputFile.close()
  cu.saveMatrix(featureMatrix,outputDir + '/' + category + '.' + featExt)
  print 'Total of',nBoxes,'positive examples collected for',category

if __name__ == "__main__":
  params = cu.loadParams("imageList featuresDir groundTruthFile outputDir featuresExt category operation")
  groundTruths = cu.loadBoxIndexFile(params['groundTruthFile'])
  imageList = [x.replace('\n','') for x in open(params['imageList'])]
  operator = None
  if params['operation'] == 'big':
    operator = big
  elif params['operation'] == 'tight':
    operator = tight
  elif params['operation'] == 'inside':
    operator = inside
  elif params['operation'] == 'background':
    operator = background
  else:
    print 'Select a valid operation: [big | tight | inside | background]'
    sys.exit()
Exemplo n.º 52
0
import numpy as np
import conf
import NN
from activation_function import Sigmoid
import utils


if __name__ == '__main__':
    print "Part 1: Loading Data\n"

    X, y = utils.loadData(conf.FILE_X, conf.FILE_Y)

    print "Part 2: Loading Parameters\n"

    W1, W2 = utils.loadParams(conf.FILE_W1, conf.FILE_W2)
    # Unroll parameters
    W = np.hstack((W1.flatten(0), W2.flatten(0)))
    W = W.reshape((len(W), 1))

    print "Part 3: Compute Cost(Feedforward)\n"

    LEARN_RATE = 0
    J, _ = NN.nnCostFunction(W, conf.INPUT_LAYER_SIZE, conf.HIDDEN_LAYER_SIZE,
                             conf.NUM_LABELS, X, y, LEARN_RATE)
    print ("Cost at parameters (loaded from w1.txt and w2.txt): %f"
           "\n(this value should be about 0.287629)\n") % J

    print "Part 4: Implement Regularization\n"

    LEARN_RATE = 1
Exemplo n.º 53
0
        try:
            boxes = groundTruth[d[0]]
        except:
            continue
        bestIoU = 0.0
        for gt in boxes:
            iou = det.IoU(d[2:6], gt)
            if iou > bestIoU:
                bestIoU = iou
        print bestIoU
        if bestIoU > minOverlap:
            candidates.append(d)
    return candidates


def saveCandidates(candidates, output):
    out = open(output, 'w')
    for k in candidates:
        out.write(k[0] + ' ' + ' '.join(map(str, map(int, k[2:6]))) + '\n')
    out.close()


if __name__ == "__main__":
    params = cu.loadParams("detectionsFile groundTruths output")
    detectionsData = [x.split() for x in open(params['detectionsFile'])]
    detections = eval.loadDetections(detectionsData)
    groundTruth = cu.loadBoxIndexFile(params['groundTruths'])
    candidates = selectBestBoxes(detections, groundTruth, 0.5)
    print 'Selected candidates:', len(candidates)
    saveCandidates(candidates, params['output'])
import os,sys
from PIL import Image
import utils as cu
import numpy as np

def findNearestNeighbor(H,i):
  J = np.tile(H[i,:],(H.shape[0],1))
  R = np.sum( np.abs(J-H), axis=1 )
  R[i] = np.inf
  return np.argmin(R),np.min(R)

params = cu.loadParams('imageDir')
dir = params['imageDir']
allImages = os.listdir(dir)
H = np.zeros( (len(allImages),768) )
print 'Scanning',len(allImages),'images'
imgs = 0
for f in allImages:
  try:
    im = Image.open(dir+'/'+f)
    h = np.asarray(im.histogram())
    if len(h) == 256:
      H[imgs,:] = np.tile(np.asarray(h),(1,3))
    else:
      H[imgs,:] = np.asarray(h)
    imgs += 1
  except:
    print 'Problems with',f
  
H = H[0:imgs,:]
for i in range(imgs):
def computePrecAt(tp,K):
  import numpy as np
  print 'Prec@K',
  for k in K:
    print '(',str(k),':',np.sum(tp[0:k])/float(k),')',
  print ''

def bigOverlap(box, gt):
  if ldet.overlap(box,gt) > 0.5 and ldet.IoU(box,gt) < 0.5:
    return 1.0
  else:
    return 0.0

# Main Program
if __name__ == "__main__":
  params = cu.loadParams("overlap groundTruth detections output")
  indexData = [x.split() for x in open(params['groundTruth'])]
  detectionsData = [x.split() for x in open(params['detections'])]

  overlapLimit = 1.0
  if params['overlap'].startswith('big'):
    minOverlap = float(params['overlap'].replace('big',''))
    overlapMeasure = lambda x,y: np.exp( -( (1.0-ldet.overlap(x,y))**2 + (0.25-ldet.IoU(x,y))**2 ) )
    #overlapMeasure = bigOverlap
  elif params['overlap'].startswith('tight'):
    minOverlap = float(params['overlap'].replace('tight',''))
    overlapMeasure = ldet.IoU
  elif params['overlap'].startswith('inside'):
    minOverlap = float(params['overlap'].replace('inside',''))
    overlapMeasure = lambda x,y: np.exp( -( (1.0-ldet.overlap(y,x))**2 + (0.25-ldet.IoU(x,y))**2 ) )
  elif params['overlap'].startswith('OV'):
Exemplo n.º 56
0
                ]
                scaleBoxes.append(shiftBox(nb, w, h))
        else:
            x1, x2 = 0, adjustedSize
            parts = int(round(bh / adjustedSize + 0.3))
            step = (bh - adjustedSize) / max(parts - 1, 1)
            for i in range(parts):
                nb = [
                    x1, gt[1] + i * step, x2, gt[1] + i * step + adjustedSize
                ]
                scaleBoxes.append(shiftBox(nb, w, h))
    return scaleBoxes


if __name__ == "__main__":
    params = cu.loadParams("groundTruthBoxes imageDir outputDir cropSize")
    groundTruthBoxes = cu.loadBoxIndexFile(params['groundTruthBoxes'])
    cropSize = int(params['cropSize'])
    projections = {}
    overlaps = []
    ious = []

    for img in groundTruthBoxes.keys():
        print img
        name = img.split('/')[1]
        if not os.path.isfile(params['imageDir'] + '/' + name + '.JPEG'):
            continue
        im = Image.open(params['imageDir'] + '/' + name + '.JPEG')
        w, h = im.size
        try:
            p = projections[img]
Exemplo n.º 57
0
import sys, os
import utils as cu

params = cu.loadParams('fullList positivesList output')

full = [x for x in open(params['fullList'])]
positives = [x for x in open(params['positivesList'])]
out = open(params['output'], 'w')
for r in full:
    if r not in positives:
        out.write(r)
out.close()
Exemplo n.º 58
0
    # Expected Format: k:v!k:v!
    params = params.split('!')
    result = {}
    for p in params:
        if p != '':
            k, v = p.split(':')
            result[k] = v
    return result


########################################
## MAIN PROGRAM
########################################
if __name__ == "__main__":
    params = cu.loadParams(
        "modelType modelParams category positivesList trainingList masksDir featuresDir featuresExt modelOut overlap iterations"
    )
    trainingList = [x.replace('\n', '') for x in open(params['trainingList'])]
    maxNegOverlap = float(params['overlap'])
    iterations = int(params['iterations']) + 1
    positives = readPositivesData(params['masksDir'], params['featuresDir'],
                                  params['featuresExt'],
                                  params['positivesList'], params['category'])
    args = parseModelParams(params['modelParams'])
    print " ++ LEARNING", params['modelType'], "MODEL WITH ARGS:", params[
        'modelParams'], " ++ "
    for i in range(iterations):
        mainLoop(params['modelType'], args, positives, list(trainingList),
                 params['featuresDir'], params['featuresExt'],
                 params['modelOut'], maxNegOverlap, i)
    os.system('rm ' + params['modelOut'] + '.hards')