def __init__(self): os.environ['CUDA_VISIBLE_DEVICES'] = args.gpus if args.chars_file == '': self.alphabet = alphabetChinese else: self.alphabet = utils.load_chars(args.chars_file) nclass = len(self.alphabet) + 1 nc = 1 self.net = CRNN(args.imgH, nc, args.nh, nclass) self.train_dataloader, self.val_dataloader = self.dataloader( self.alphabet) self.criterion = CTCLoss() self.optimizer = self.get_optimizer() self.converter = utils.strLabelConverter(self.alphabet, ignore_case=False) self.best_acc = 0.00001 model_name = '%s' % (args.dataset_name) if not os.path.exists(args.save_prefix): os.mkdir(args.save_prefix) args.save_prefix += model_name if args.pretrained != '': print('loading pretrained model from %s' % args.pretrained) checkpoint = torch.load(args.pretrained) if 'model_state_dict' in checkpoint.keys(): # self.optimizer.load_state_dict(checkpoint['optimizer_state_dict']) args.start_epoch = checkpoint['epoch'] self.best_acc = checkpoint['best_acc'] checkpoint = checkpoint['model_state_dict'] from collections import OrderedDict model_dict = OrderedDict() for k, v in checkpoint.items(): if 'module' in k: model_dict[k[7:]] = v else: model_dict[k] = v self.net.load_state_dict(model_dict) if not args.cuda and torch.cuda.is_available(): print( "WARNING: You have a CUDA device, so you should probably run with --cuda" ) elif args.cuda and torch.cuda.is_available(): print('available gpus is ', torch.cuda.device_count()) self.net = torch.nn.DataParallel(self.net, output_dim=1).cuda() self.criterion = self.criterion.cuda()
def main(args): # -------------------------------------------------------------------------- # DATA logger.info('-' * 100) logger.info('Load data files') train_exs = utils.load_data(args, args.train_file, skip_no_answer=True) logger.info('Num train examples = %d' % len(train_exs)) dev_exs = utils.load_data(args, args.dev_file) logger.info('Num dev examples = %d' % len(dev_exs)) # If we are doing offician evals then we need to: # 1) Load the original text to retrieve spans from offsets. # 2) Load the (multiple) text answers for each question. if args.official_eval: dev_texts = utils.load_text(args.dev_json) dev_offsets = {ex['id']: ex['offsets'] for ex in dev_exs} dev_answers = utils.load_answers(args.dev_json) # -------------------------------------------------------------------------- # MODEL logger.info('-' * 100) start_epoch = 0 if args.checkpoint and os.path.isfile(args.model_file + '.checkpoint'): # Just resume training, no modifications. logger.info('Found a checkpoint...') checkpoint_file = args.model_file + '.checkpoint' model, start_epoch = DocReader.load_checkpoint(checkpoint_file, args) else: # Training starts fresh. But the model state is either pretrained or # newly (randomly) initialized. if args.pretrained: logger.info('Using pretrained model...') model = DocReader.load(args.pretrained, args) if args.expand_dictionary: logger.info('Expanding dictionary for new data...') # Add words in training + dev examples words = utils.load_words(args, train_exs + dev_exs) added_words = model.expand_dictionary(words) # Load pretrained embeddings for added words if args.embedding_file: model.load_embeddings(added_words, args.embedding_file) logger.info('Expanding char dictionary for new data...') # Add words in training + dev examples chars = utils.load_chars(args, train_exs + dev_exs) added_chars = model.expand_char_dictionary(chars) # Load pretrained embeddings for added words if args.char_embedding_file: model.load_char_embeddings(added_chars, args.char_embedding_file) else: logger.info('Training model from scratch...') model = init_from_scratch(args, train_exs, dev_exs) # Set up partial tuning of embeddings if args.tune_partial > 0: logger.info('-' * 100) logger.info('Counting %d most frequent question words' % args.tune_partial) top_words = utils.top_question_words( args, train_exs, model.word_dict ) for word in top_words[:5]: logger.info(word) logger.info('...') for word in top_words[-6:-1]: logger.info(word) model.tune_embeddings([w[0] for w in top_words]) # Set up optimizer model.init_optimizer() # Use the GPU? if args.cuda: model.cuda() # Use multiple GPUs? if args.parallel: model.parallelize() # -------------------------------------------------------------------------- # DATA ITERATORS # Two datasets: train and dev. If we sort by length it's faster. logger.info('-' * 100) logger.info('Make data loaders') train_dataset = data.ReaderDataset(train_exs, model, single_answer=True) if args.sort_by_len: train_sampler = data.SortedBatchSampler(train_dataset.lengths(), args.batch_size, shuffle=True) else: train_sampler = torch.utils.data.sampler.RandomSampler(train_dataset) # if args.use_sentence_selector: # train_batcher = vector.sentence_batchifier(model, single_answer=True) # batching_function = train_batcher.batchify # else: batching_function = vector.batchify train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=args.batch_size, sampler=train_sampler, num_workers=args.data_workers, collate_fn=batching_function, pin_memory=args.cuda, ) dev_dataset = data.ReaderDataset(dev_exs, model, single_answer=False) if args.sort_by_len: dev_sampler = data.SortedBatchSampler(dev_dataset.lengths(), args.test_batch_size, shuffle=False) else: dev_sampler = torch.utils.data.sampler.SequentialSampler(dev_dataset) # if args.use_sentence_selector: # dev_batcher = vector.sentence_batchifier(model, single_answer=False) # batching_function = dev_batcher.batchify # else: batching_function = vector.batchify dev_loader = torch.utils.data.DataLoader( dev_dataset, batch_size=args.test_batch_size, sampler=dev_sampler, num_workers=args.data_workers, collate_fn=batching_function, pin_memory=args.cuda, ) # ------------------------------------------------------------------------- # PRINT CONFIG logger.info('-' * 100) logger.info('CONFIG:\n%s' % json.dumps(vars(args), indent=4, sort_keys=True)) # -------------------------------------------------------------------------- # TRAIN/VALID LOOP logger.info('-' * 100) logger.info('Starting training...') stats = {'timer': utils.Timer(), 'epoch': 0, 'best_valid': 0} # -------------------------------------------------------------------------- # QUICKLY VALIDATE ON PRETRAINED MODEL if args.global_mode == "test": result1 = validate_unofficial(args, dev_loader, model, stats, mode='dev') result2 = validate_official(args, dev_loader, model, stats, dev_offsets, dev_texts, dev_answers) print(result2[args.valid_metric]) print(result1["exact_match"]) validate_adversarial(args, model, stats, mode="dev") exit(0) for epoch in range(start_epoch, args.num_epochs): stats['epoch'] = epoch # Train train(args, train_loader, model, stats) # Validate unofficial (train) validate_unofficial(args, train_loader, model, stats, mode='train') # Validate unofficial (dev) result = validate_unofficial(args, dev_loader, model, stats, mode='dev') # Validate official if args.official_eval: result = validate_official(args, dev_loader, model, stats, dev_offsets, dev_texts, dev_answers) # Save best valid if args.valid_metric is None or args.valid_metric == 'None': model.save(args.model_file) elif result[args.valid_metric] > stats['best_valid']: logger.info('Best valid: %s = %.2f (epoch %d, %d updates)' % (args.valid_metric, result[args.valid_metric], stats['epoch'], model.updates)) model.save(args.model_file) stats['best_valid'] = result[args.valid_metric]
def main(args): # -------------------------------------------------------------------------- # DATA logger.info('-' * 100) logger.info('Load data files') train_exs = utils.load_data(args, args.train_file, skip_no_answer=True) logger.info('Num train examples = %d' % len(train_exs)) dev_exs = utils.load_data(args, args.dev_file) logger.info('Num dev examples = %d' % len(dev_exs)) # If we are doing offician evals then we need to: # 1) Load the original text to retrieve spans from offsets. # 2) Load the (multiple) text answers for each question. if args.official_eval: dev_texts = utils.load_text(args.dev_json) dev_offsets = {ex['id']: ex['offsets'] for ex in dev_exs} dev_answers = utils.load_answers(args.dev_json) else: dev_texts = None dev_offsets = None dev_answers = None # -------------------------------------------------------------------------- # MODEL logger.info('-' * 100) start_epoch = 0 if args.checkpoint and os.path.isfile(args.model_file + '.checkpoint'): # Just resume training, no modifications. logger.info('Found a checkpoint...') checkpoint_file = args.model_file + '.checkpoint' model, start_epoch = DocReader.load_checkpoint(checkpoint_file, args) else: # Training starts fresh. But the model state is either pretrained or # newly (randomly) initialized. if args.pretrained: logger.info('Using pretrained model...') model = DocReader.load(args.pretrained, args) if args.expand_dictionary: logger.info('Expanding dictionary for new data...') # Add words in training + dev examples words = utils.load_words(args, train_exs + dev_exs) added_words = model.expand_dictionary(words) # Load pretrained embeddings for added words if args.embedding_file: model.load_embeddings(added_words, args.embedding_file) logger.info('Expanding char dictionary for new data...') # Add words in training + dev examples chars = utils.load_chars(args, train_exs + dev_exs) added_chars = model.expand_char_dictionary(chars) # Load pretrained embeddings for added words if args.char_embedding_file: model.load_char_embeddings(added_chars, args.char_embedding_file) else: logger.info('Training model from scratch...') model = init_from_scratch(args, train_exs, dev_exs) # Set up partial tuning of embeddings if args.tune_partial > 0: logger.info('-' * 100) logger.info('Counting %d most frequent question words' % args.tune_partial) top_words = utils.top_question_words(args, train_exs, model.word_dict) for word in top_words[:5]: logger.info(word) logger.info('...') for word in top_words[-6:-1]: logger.info(word) model.tune_embeddings([w[0] for w in top_words]) # Set up optimizer model.init_optimizer() # Use the GPU? if args.cuda: model.cuda() # Use multiple GPUs? if args.parallel: model.parallelize() # -------------------------------------------------------------------------- # DATA ITERATORS # Two datasets: train and dev. If we sort by length it's faster. logger.info('-' * 100) logger.info('Make data loaders') train_dataset = data.ReaderDataset(train_exs, model, single_answer=True) if args.sort_by_len: train_sampler = data.SortedBatchSampler(train_dataset.lengths(), args.batch_size, shuffle=True) else: train_sampler = torch.utils.data.sampler.RandomSampler(train_dataset) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=args.batch_size, sampler=train_sampler, num_workers=args.data_workers, collate_fn=vector.batchify, pin_memory=args.cuda, ) dev_dataset = data.ReaderDataset(dev_exs, model, single_answer=False) if args.sort_by_len: dev_sampler = data.SortedBatchSampler(dev_dataset.lengths(), args.test_batch_size, shuffle=False) else: dev_sampler = torch.utils.data.sampler.SequentialSampler(dev_dataset) dev_loader = torch.utils.data.DataLoader( dev_dataset, batch_size=args.test_batch_size, sampler=dev_sampler, num_workers=args.data_workers, collate_fn=vector.batchify, pin_memory=args.cuda, ) # ------------------------------------------------------------------------- # PRINT CONFIG logger.info('-' * 100) logger.info('CONFIG:\n%s' % json.dumps(vars(args), indent=4, sort_keys=True)) # -------------------------------------------------------------------------- # TRAIN/VALID LOOP logger.info('-' * 100) logger.info('Starting training...') stats = {'timer': utils.Timer(), 'epoch': 0, 'best_valid': 0} model_prefix = os.path.join(args.model_dir, args.model_name) kept_models = [] best_model_path = '' for epoch in range(start_epoch, args.num_epochs): stats['epoch'] = epoch # Train train(args, train_loader, model, stats) # Validate unofficial (train) logger.info('eval: train split unofficially...') validate_unofficial(args, train_loader, model, stats, mode='train') if args.official_eval: # Validate official (dev) logger.info('eval: dev split unofficially..') result = validate_official(args, dev_loader, model, stats, dev_offsets, dev_texts, dev_answers) else: # Validate unofficial (dev) logger.info( 'train: evaluating dev split evaluating dev official...') result = validate_unofficial(args, dev_loader, model, stats, mode='dev') em = result['exact_match'] f1 = result['f1'] suffix = 'em_{:4.2f}-f1_{:4.2f}.mdl'.format(em, f1) # Save best valid model_file = '{}-epoch_{}-{}'.format(model_prefix, epoch, suffix) if args.valid_metric: if result[args.valid_metric] > stats['best_valid']: for f in glob.glob('{}-best*'.format(model_prefix)): os.remove(f) logger.info('eval: dev best %s = %.2f (epoch %d, %d updates)' % (args.valid_metric, result[args.valid_metric], stats['epoch'], model.updates)) model_file = '{}-best-epoch_{}-{}'.format( model_prefix, epoch, suffix) best_model_path = model_file model.save(model_file) stats['best_valid'] = result[args.valid_metric] for f in kept_models: os.remove(f) kept_models.clear() else: model.save(model_file) kept_models.append(model_file) if len(kept_models) >= args.early_stop: logger.info( 'Finished training due to %s not improved for %d epochs, best model is at: %s' % (args.valid_metric, args.early_stop, best_model_path)) return else: # just save model every epoch since no validation metric is given model.save(model_file)
self.interpolation = interpolation self.toTensor = transforms.ToTensor() def __call__(self, img): scale = img.size[1] * 1.0/ self.imgH w = int(img.size[0] / scale) img = img.resize((w, self.imgH), self.interpolation) img = self.toTensor(img) img.sub_(0.5).div_(0.5) return img if __name__ == '__main__': transform = transforms.Compose( [transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5), resizeNormalize(32)]) # dataset = BaseDataset('/home/hxt/projects/crnn_my/data', transform=transform) chars_file = '/home/hxt/projects/crnn_my/chars/char_std_5990.txt' alphabet = load_chars(chars_file) dataset = NumDataset('/home/hxt/Synth-Chinese/Sythetic_String_Dataset', alphabet=alphabet, mode='train', transform=transform) print(len(dataset)) print(dataset[2]) # dataloader = DataLoader(dataset=dataset, # batch_size=len(dataset)//2, # shuffle=True, # num_workers=2, # pin_memory=False) # for i, (img, label) in enumerate(dataloader): # img, label 都有batch_size个元素 label为一个tuple # print(i, img.size(), len(label))