Exemplo n.º 1
0
 def _load_init_population(self, intcodedir, size=None, copy=True):
     # make sure we are at the beginning of experiment
     assert self._istep == 0, 'initialization only allowed at the beginning'
     # make sure size <= population size
     if size is not None:
         assert size <= self._popsize, f'size {size} too big for population of size {self._popsize}'
     else:
         size = self._popsize
     # load codes
     init_population, genealogy = utils.load_codes2(intcodedir, size,
                                                    self._random_generator)
     init_population = init_population.reshape(
         (len(init_population), *self._code_shape))
     # fill the rest of population if size==len(codes) < population size
     if len(init_population) < self._popsize:
         remainder_size = self._popsize - len(init_population)
         remainder_pop, remainder_genealogy = \
             self._mate(init_population, genealogy, np.ones(len(init_population)), remainder_size)
         remainder_pop, remainder_genealogy = self._mutate(
             remainder_pop, remainder_genealogy)
         init_population = np.concatenate((init_population, remainder_pop))
         genealogy = genealogy + remainder_genealogy
     # apply
     self._init_population = init_population
     self._init_population_fns = genealogy  # a list of '*.npy' file names
     self._curr_samples = self._init_population.copy()
     self._genealogy = [f'[init]{g}' for g in genealogy]
     # no update for idc, idx, ids because popsize unchanged
     if copy:
         self._copy_init_population()
     if self._generator.loaded:
         self._prepare_images()
Exemplo n.º 2
0
 def _load_init_code(self, initcodedir, copy=True):
     # make sure we are at the beginning of experiment
     assert self._istep == 0, 'initialization only allowed at the beginning'
     init_code, init_codefns = utils.load_codes2(initcodedir, 1,
                                                 self._random_generator)
     self._curr_center = init_code.reshape(self._code_shape)
     self._init_codefn = init_codefns[0]
     self._best_code = self._curr_center.copy()
     if copy:
         self._copy_init_code()
Exemplo n.º 3
0
             ('caffe-net', 'fc8', 1), ]
Optim_arr = ["Genetic", "CholCMA"]
#%% Genetic Algorithm Parameters AND CMA-ES Parameters
population_size = 40
mutation_rate = 0.25
mutation_size = 0.75
kT_multiplier = 2
n_conserve = 10
parental_skew = 0.75
# Genetic(population_size, mutation_rate, mutation_size, kT_multiplier, recorddir,
#          parental_skew=0.5, n_conserve=0)
code_length = 4096
init_sigma = 3
Aupdate_freq = 10
# use the mean code of the texture patterns as the initcode
codes, _ = utils.load_codes2(initcodedir, 40)
initcode = np.mean(codes, axis=0, keepdims=True)
# CholeskyCMAES(recorddir=recorddir, space_dimen=code_length, init_sigma=init_sigma,
#                   Aupdate_freq=Aupdate_freq, init_code=np.zeros([1, code_length]))
#%%
from time import time
import matplotlib.pylab as plt

for unit in unit_arr[:]:
    savedir = join(recorddir, "optim_cmp", "%s_%s_%d" % (unit[0], unit[1], unit[2]))
    os.makedirs(savedir, exist_ok=True)
    for Optim_str in Optim_arr:
        for triali in range(10):
            t0 = time()
            if Optim_str == "Genetic":
                optim = Genetic(population_size, mutation_rate, mutation_size, kT_multiplier, recorddir,