def init_settings(exec_params): settings = dict() PROJECT_ROOT = Path(__file__).resolve().parent.parent CONFIGS_PATH = PROJECT_ROOT / 'configs' CONFIG_FILES_PATHS = { 'creds': CONFIGS_PATH / exec_params['creds_path'], 'filtration_rules': CONFIGS_PATH / exec_params['filtration_path'], 'db_connection': CONFIGS_PATH / 'db.yml', 'sheets_data': CONFIGS_PATH / 'sheets_data.yml', } settings['PROJECT_ROOT'] = PROJECT_ROOT settings['CONFIGS_PATH'] = CONFIGS_PATH settings['CONFIG_FILES_PATHS'] = CONFIG_FILES_PATHS settings.update( {section:load_yml(path) for (section, path) in CONFIG_FILES_PATHS.items()} ) # stored in json and parsed by oauth2 settings['sheets_creds_path'] = CONFIGS_PATH / 'flatty_spreadsheets.json' settings['filter_query'] = build_query_tree(settings['filtration_rules']) # write to google sheet when number of voters exceed this threshold settings['sheet_write_threshold'] = 1 settings['tel_regex'] = '\+\s\d+\s\d{2}\s\d{3}-\d{2}-\d{2}' settings['url_regex'] = 'https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+~#=]{1,256}\.[a-zA-Z0-9()]{1,6}\b([-a-zA-Z0-9()@:%_\+.~#?&//=]*)' module = sys.modules[__name__] for (key, val) in settings.items(): setattr(module, key.upper(), val) return settings
def test_factory(): config = load_yml('factory_pattern/config.yml') factory_pattern = config['factory_pattern'] factory = get_instance_of_attr(factory_pattern['factory']) chart = factory.get_chart(factory_pattern['chart_type']) chart.display()
def test_facade(): config = load_yml('facade_pattern/config.yml') facade_pattern = config['facade'] facade = get_instance_of_attr(facade_pattern)('test_file') facade.encrypt()
import os import glob import socket import tensorflow as tf import time import datetime import neuralgym as ng from model import HinpaintModel from utils import load_yml from trainer import HiTrainer, d_graph_deploy, get_batch, g_graph_deploy, get_input_queue if __name__ == "__main__": config = load_yml('config.yml') if config.GPU_ID != -1: gpu_ids = config.GPU_ID else: gpu_ids = [0] print('building networks and losses...') enq_ops = [] # load training data with open(config.TRAIN_LIST) as f: fnames = f.read().splitlines() endnd = (len(fnames) // config.BATCH_SIZE) * config.BATCH_SIZE fnames = fnames[:endnd] #input_queue, enq_op = get_input_queue(fnames) data = ng.data.DataFromFNames(fnames, config.IMG_SHAPE, random_crop=config.RANDOM_CROP, \ enqueue_size=32, queue_size=256, nthreads=config.N_THREADS) #enq_ops.append(enq_op)
def test_abstract_factory(): config = load_yml('factory_pattern/config.yml') factory_pattern = config['abstract_factory'] chart = get_instance_of_attr(factory_pattern['chart'])() chart.draw_chart()
def test_bridge(): config = load_yml('bridge_pattern/config.yml') os = get_instance_of_attr(config['os'])() image = get_instance_of_attr(config['image'])() image.setImageImp(os) image.parseFile('leo.jpg')