def check_adaboost_predict(base_estimator, algorithm, expected_score):
    train_fs, test_fs = make_sparse_data()

    # train an AdaBoostClassifier on the training data and evalute on the
    # testing data
    learner = Learner('AdaBoostClassifier', model_kwargs={'base_estimator': base_estimator,
                                                          'algorithm': algorithm})
    learner.train(train_fs, grid_search=False)
    test_score = learner.evaluate(test_fs)[1]
    assert_almost_equal(test_score, expected_score)
def check_sparse_predict(learner_name, expected_score, use_feature_hashing=False):
    train_fs, test_fs = make_sparse_data(
        use_feature_hashing=use_feature_hashing)

    # train the given classifier on the training
    # data and evalute on the testing data
    learner = Learner(learner_name)
    learner.train(train_fs, grid_search=False)
    test_score = learner.evaluate(test_fs)[1]
    assert_almost_equal(test_score, expected_score)
def check_sparse_predict_sampler(use_feature_hashing=False):
    train_fs, test_fs = make_sparse_data(
        use_feature_hashing=use_feature_hashing)

    if use_feature_hashing:
        sampler = 'RBFSampler'
        sampler_parameters = {"gamma": 1.0, "n_components": 50}
    else:
        sampler = 'Nystroem'
        sampler_parameters = {"gamma": 1.0, "n_components": 50,
                              "kernel": 'rbf'}

    learner = Learner('LogisticRegression',
                      sampler=sampler,
                      sampler_kwargs=sampler_parameters)

    learner.train(train_fs, grid_search=False)
    test_score = learner.evaluate(test_fs)[1]

    expected_score = 0.48 if use_feature_hashing else 0.45
    assert_almost_equal(test_score, expected_score)
Exemplo n.º 4
0
def check_sparse_predict_sampler(use_feature_hashing=False):
    train_fs, test_fs = make_sparse_data(
        use_feature_hashing=use_feature_hashing)

    if use_feature_hashing:
        sampler = 'RBFSampler'
        sampler_parameters = {"gamma": 1.0, "n_components": 50}
    else:
        sampler = 'Nystroem'
        sampler_parameters = {
            "gamma": 1.0,
            "n_components": 50,
            "kernel": 'rbf'
        }

    learner = Learner('LogisticRegression',
                      sampler=sampler,
                      sampler_kwargs=sampler_parameters)

    learner.train(train_fs, grid_search=False)
    test_score = learner.evaluate(test_fs)[1]

    expected_score = 0.48 if use_feature_hashing else 0.45
    assert_almost_equal(test_score, expected_score)