Exemplo n.º 1
0
    def initialize_global(self):
        print "INITIAL GLOBAL START"
        self.state_lock.acquire()

        # Use self.permissible_region to get in-bounds states
        # Uniformally sample from in-bounds regions
        # Convert map samples (which are in pixels) to world samples (in meters/radians)
        #   Take a look at utils.py
        # Update particles in place
        # Update weights in place so that all particles have the same weight and the
        # sum of the weights is one.
        # YOUR CODE HERE

        perm_pos = np.argwhere(self.permissible_region == 1)
        perm_x = perm_pos[0]
        perm_y = perm_pos[1]
        # 1000 [N_PARTICLES] random angles between 0 and 2pi radians
        perm_rand_theta = np.random.uniform(0, 2.0 * np.pi, self.N_PARTICLES)

        # choose self.N_particles indices from 0,1,2,...,len(perm_x)) which is ~(296640,) but depends on map
        # choose 1000 indices from np.arange(0, 296440) using uniform distribution
        uniform_rand_indices = np.random.choice(
            len(perm_x), self.N_PARTICLES)  # no 3rd param means uniform

        map_samples = np.zeros_like(self.particles)  # shape (1000, 3)
        map_samples[:, 0] = perm_x[uniform_rand_indices]
        map_samples[:, 1] = perm_y[uniform_rand_indices]
        map_samples[:, 2] = perm_rand_theta
        Utils.map_to_world(map_samples, self.map_info)
        self.particles[:] = map_samples[:]
        self.weights[:] = 1.0 / self.N_PARTICLES
        self.state_lock.release()

        print "INITIALIZE GLOBAL COMPLETE"
Exemplo n.º 2
0
    def advance_to_next_goal(self):
        self.currentPlanWaypointIndex += 1
        self.roi.tape_seen = False

        next_segment = plan[self.currentPlanWaypointIndex]
        next_goal_point = next_segment[0]
        gx = next_goal_point[0]
        gy = next_goal_point[1]
        gt = next_segment[1]
        self.theta_weight = next_segment[3]
        print("self.plan[current], ", next_segment)

        # delta_x = next_segment[1][0] - next_segment[0][0]
        # delta_y = next_segment[1][1] - next_segment[0][1]
        #
        # theta_radians = math.atan2(delta_y, delta_x)
        # theta_radians = wrap_pi_pi_number(theta_radians)
        # gt = 0#theta_radians

        goalPixelSpace = self.dtype([[gx, gy, gt]])
        Utils.map_to_world(goalPixelSpace, self.map_info)

        self.goal = self.dtype(
            [goalPixelSpace[0][0], goalPixelSpace[0][1], goalPixelSpace[0][2]])
        print("Next goal set to: ", self.goal, "which is", gx, ", ", gy)
Exemplo n.º 3
0
    def initialize_global(self):
        '''
        Spread the particle distribution over the permissible region of the state space.
        '''
        print("GLOBAL INITIALIZATION")
        # randomize over grid coordinate space
        self.state_lock.acquire()

        print('Waiting for map..')
        while not self.sensor_model.map_set:
            continue

        self.map_initialized = True
        self.permissible_region = self.sensor_model.permissible_region
        self.map = self.sensor_model.map
        self.map_info = self.sensor_model.map_info

        permissible_x, permissible_y = np.where(self.permissible_region == 1)
        indices = np.random.randint(0,
                                    len(permissible_x),
                                    size=self.MAX_PARTICLES)

        permissible_states = np.zeros((self.MAX_PARTICLES, 3))
        permissible_states[:, 0] = permissible_y[indices]
        permissible_states[:, 1] = permissible_x[indices]
        permissible_states[:, 2] = np.random.random(
            self.MAX_PARTICLES) * np.pi * 2.0

        Utils.map_to_world(permissible_states, self.map_info)
        self.particles = permissible_states
        self.weights[:] = 1.0 / self.MAX_PARTICLES
        self.state_lock.release()
Exemplo n.º 4
0
    def initialize_global(self):
        self.state_lock.acquire()

        # get particles
        particles = np.zeros((self.N_PARTICLES, 3))

        # Use self.permissible_region to get in-bounds states
        permissible_x, permissible_y = np.where(self.permissible_region == 1)

        # Uniformally sample from in-bounds regions
        particles_x = np.random.choice(permissible_x, self.N_PARTICLES)
        particles_y = np.random.choice(permissible_y, self.N_PARTICLES)

        #set particles x and y
        particles[:, 0] = particles_x
        particles[:, 1] = particles_y

        #convert to world samples and add to particles
        Utils.map_to_world(particles, self.map_info)

        # Update particles in place
        self.particles[:] = particles[:]

        # Update weights in place so that all particles have the same weight and the
        # sum of the weights is one.
        self.weights[:] = np.ones(self.N_PARTICLES) / float(self.N_PARTICLES)
        # YOUR CODE HERE

        self.state_lock.release()
Exemplo n.º 5
0
    def initialize_global(self):
        self.state_lock.acquire()
        # PP - priting for debug
        # print 'inside initialize_global'
        # Use self.permissible_region to get in-bounds states
        # Uniformally sample from in-bounds regions
        # Convert map samples (which are in pixels) to world samples (in meters/radians)
        #   Take a look at utils.py
        # Update particles in place
        # Update weights in place so that all particles have the same weight and the
        # sum of the weights is one.
        # YOUR CODE HERE
        '''
    ## PP - COPIED FROM SENSORMODEL.PY SKELETON CODE ## :P
    print 'Creating particles'
    angle_step = 25
    particles = np.zeros((angle_step * permissible_x.shape[0],3))
    for i in xrange(angle_step):
      particles[i*(particles.shape[0]/angle_step):(i+1)*(particles.shape[0]/angle_step),0] = permissible_y[:]
      particles[i*(particles.shape[0]/angle_step):(i+1)*(particles.shape[0]/angle_step),1] = permissible_x[:]
      particles[i*(particles.shape[0]/angle_step):(i+1)*(particles.shape[0]/angle_step),2] = i*(2*np.pi / angle_step)

    Utils.map_to_world(particles, map_info)
    weights = np.ones(particles.shape[0]) / float(particles.shape[0])

    '''

        # PP - use self.permissible_region - its an array of dimession  map.height X map.width
        # PP - how to find which indices have 1 ?? - use np.where
        # PP - valid locations will be 2D array of Nx2 of valid pixels
        valid_locations_x, valid_locations_y = np.array(
            np.where(self.permissible_region == 1))
        #print valid_locations_x, valid_locations_y
        # PP - uniformly sample from valid locations on map

        # PP - what will be theta here? sample uniformly between 0 to 2*pi?
        #length = np.random.uniform(0, 1)
        valid_locations_poses = np.zeros((self.N_PARTICLES, 3))
        #print valid_locations_poses
        rand_idx = np.random.choice(len(valid_locations_x), self.N_PARTICLES)

        valid_locations_poses[:, 0] = valid_locations_x[rand_idx]
        valid_locations_poses[:, 1] = valid_locations_y[rand_idx]
        #valid_locations_poses[:, 2] = np.random.uniform(0, 2*np.pi)
        valid_locations_poses[:, 2] = np.random.random(
            self.N_PARTICLES) * np.pi * 2.0
        #print valid_locations_poses

        # PP - convert map to world , valid_locations_poses should be Nx3 array
        Utils.map_to_world(valid_locations_poses, self.map_info)

        # PP - update particles
        self.particles[:, 0] = valid_locations_poses[:, 0]
        self.particles[:, 1] = valid_locations_poses[:, 1]
        self.particles[:, 2] = valid_locations_poses[:, 2]
        #print self.particles
        # PP - update weights
        self.weights[:] = 1.0 / self.N_PARTICLES
        self.state_lock.release()
Exemplo n.º 6
0
  def initialize_global(self):

    permissible_x, permissible_y = np.where(self.permissible_region == 1)
    
    angle_step = 4
    #indices = np.random.randint(0, len(permissible_x), size=self.particles.shape[0]/angle_step)
    step = 4*len(permissible_x)/self.particles.shape[0]
    indices = np.arange(0, len(permissible_x), step)[:(self.particles.shape[0]/4)]
    permissible_states = np.zeros((self.particles.shape[0],3))
    for i in xrange(angle_step):
      permissible_states[i*(self.particles.shape[0]/angle_step):(i+1)*(self.particles.shape[0]/angle_step),0] = permissible_y[indices]
      permissible_states[i*(self.particles.shape[0]/angle_step):(i+1)*(self.particles.shape[0]/angle_step),1] = permissible_x[indices]
      permissible_states[i*(self.particles.shape[0]/angle_step):(i+1)*(self.particles.shape[0]/angle_step),2] = i*(2*np.pi / angle_step)#np.random.random(self.particles.shape[0]) * np.pi * 2.0  
     
    Utils.map_to_world(permissible_states, self.map_info)
    self.particles[:,:] = permissible_states[:,:]
    self.weights[:] = 1.0 / self.particles.shape[0]
Exemplo n.º 7
0
def generate_heatmap(map_resp, scan_msg):
    width = map_resp.map.info.width
    height = map_resp.map.info.height
    heatmap = np.zeros((height, width))
    map_data = np.array(map_resp.map.data).reshape(heatmap.shape)

    # particles (in map pixels) where map is permissible
    pixel_particles = np.zeros((width * height, 3))
    # populate all indices
    pixel_particles[:, 0] = np.tile(np.arange(width), height)
    pixel_particles[:, 1] = np.repeat(np.arange(height), width)
    # filter particles based on map
    pixel_particles = pixel_particles.reshape(height, width, 3)[map_data >= 0]

    # downsample particles
    downsampled_indices = np.arange(0, pixel_particles.shape[0],
                                    HEATMAP_XY_STEP)
    pixel_particles = pixel_particles[downsampled_indices]

    # transform particles into "world" frame (in meters, etc)
    meter_particles = np.copy(pixel_particles)
    utils.map_to_world(meter_particles, map_resp.map.info)

    num_particles = meter_particles.shape[0]
    weights = np.ones(num_particles) / float(num_particles)

    sensor_model = SensorModel(map_resp.map, meter_particles, weights)

    max_weights = np.zeros(num_particles)
    # iterate through all thetas
    for theta in np.linspace(-np.pi, np.pi, HEATMAP_NUM_THETA):
        meter_particles[:, 2] = theta
        sensor_model.lidar_cb(scan_msg)
        # update the max weights
        np.maximum.reduce((weights, max_weights), out=max_weights)

    max_weights /= np.sum(max_weights)
    # populate heatmap according to max_weights
    for i in range(num_particles):
        px, py = pixel_particles[i, 0:2]
        heatmap[int(py), int(px)] = max_weights[i]

    rospy.logerr("done computing heatmap")

    return heatmap
Exemplo n.º 8
0
    def initialize_global(self):
        self.state_lock.acquire()

        # Use self.permissible_region to get in-bounds states
        # Uniformally sample from in-bounds regions
        # Convert map samples (which are in pixels) to world samples (in meters/radians)
        #   Take a look at utils.py
        # Update particles in place
        # Update weights in place so that all particles have the same weight and the
        # sum of the weights is one.
        # YOUR CODE HERE

        # get particles
        particles = np.zeros((self.N_PARTICLES, 3))

        # Use self.permissible_region to get in-bounds states
        permissible_x, permissible_y = np.where(self.permissible_region == 1)

        num_perms = permissible_x.shape[0]  # length of permissible array

        # Uniformally sample from in-bounds regions
        # Choosing n_particles number of permissible locations for the particles
        perm_iter = int(np.ceil(num_perms / self.N_PARTICLES) + 1)
        particles[:, 0] = permissible_y[0:num_perms:perm_iter]
        particles[:, 1] = permissible_x[0:num_perms:perm_iter]

        # Assigning theta of particles to random orientation between -pi and pi
        particles[:, 2] = -np.pi + 2 * np.pi * np.random.rand(
            self.N_PARTICLES, 1)[:, 0]

        #convert to world samples and add to particles
        Utils.map_to_world(particles, self.map_info)

        #np.set_printoptions(threshold=sys.maxsize)
        #np.set_printoptions(suppress=True)

        # Update particles in place
        self.particles[:] = particles[:]

        # Update weights in place so that all particles have the same weight and the
        # sum of the weights is one.
        self.weights[:] = np.ones(self.N_PARTICLES) / float(self.N_PARTICLES)

        self.state_lock.release()
Exemplo n.º 9
0
    def initialize_global(self):
        '''
        Spread the particle distribution over the permissible region of the state space.
        '''
        print "GLOBAL INITIALIZATION"
        # randomize over grid coordinate space
        self.state_lock.acquire()
        permissible_x, permissible_y = np.where(self.permissible_region == 1)
        indices = np.random.randint(0, len(permissible_x), size=self.MAX_PARTICLES)

        permissible_states = np.zeros((self.MAX_PARTICLES,3))
        permissible_states[:,0] = permissible_y[indices]
        permissible_states[:,1] = permissible_x[indices]
        permissible_states[:,2] = np.random.random(self.MAX_PARTICLES) * np.pi * 2.0

        Utils.map_to_world(permissible_states, self.map_info)
        self.particles = permissible_states
        self.weights[:] = 1.0 / self.MAX_PARTICLES
        self.state_lock.release()
Exemplo n.º 10
0
    def initialize_global(self):
        """
        Initialize the particles to cover the map
        """
        self.state_lock.acquire()
        # Get in-bounds locations
        permissible_x, permissible_y = np.where(self.permissible_region == 1)

        # The number of particles at each location, each with different rotation
        angle_step = 4

        # The sample interval for permissible states
        permissible_step = angle_step * len(
            permissible_x) / self.particles.shape[0]

        # Indices of permissible states to use
        indices = np.arange(0, len(permissible_x),
                            permissible_step)[:(self.particles.shape[0] /
                                                angle_step)]

        # Proxy for the new particles
        permissible_states = np.zeros((self.particles.shape[0], 3))

        # Loop through permissible states, each iteration drawing particles with
        # different rotation
        for i in range(angle_step):
            idx_start = i * (self.particles.shape[0] / angle_step)
            idx_end = (i + 1) * (self.particles.shape[0] / angle_step)

            permissible_states[idx_start:idx_end, 0] = permissible_y[indices]
            permissible_states[idx_start:idx_end, 1] = permissible_x[indices]
            permissible_states[idx_start:idx_end,
                               2] = i * (2 * np.pi / angle_step)

        # Transform permissible states to be w.r.t world
        utils.map_to_world(permissible_states, self.map_info)

        # Reset particles and weights
        self.particles[:, :] = permissible_states[:, :]
        self.weights[:] = 1.0 / self.particles.shape[0]
        # self.publish_particles(self.particles)
        self.state_lock.release()
Exemplo n.º 11
0
  def visualizePlan(self):
    if self.plan_pub.get_num_connections() > 0:
      frame_id = 'map'
      pa = Path()
      pa.header = Utils.make_header(frame_id)
      pa.poses = []
      for i in range(self.currentPlanWaypointIndex,len(plan)):
          next_segment = plan[i]
          next_goal_point = next_segment[0]
          gx = next_goal_point[0]
          gy = next_goal_point[1]
          gt = next_segment[1]

          goalPixelSpace = self.dtype([[gx, gy, gt]])
          Utils.map_to_world(goalPixelSpace, self.map_info)

          thegoal = [goalPixelSpace[0][0], goalPixelSpace[0][1], goalPixelSpace[0][2]]
          pa.poses.append(Utils.particle_to_posestamped(thegoal, frame_id))

      self.plan_pub.publish(pa)
Exemplo n.º 12
0
    def initialize_global(self):
        '''
        Spread the particle distribution over the permissible region of the state space.
        '''
        print("GLOBAL INITIALIZATION")
        # randomize over grid coordinate space
        with self.state_lock:
            print('Waiting for map..')
            while not self.sensor_model.map_set:
                rospy.sleep(0.05)

            self.map_initialized = True
            self.permissible_region = self.sensor_model.permissible_region
            self.map = self.sensor_model.map
            self.map_info = self.sensor_model.map_info

            permissible_x, permissible_y = np.where(
                self.permissible_region == 1)
            indices = np.random.randint(0,
                                        len(permissible_x),
                                        size=self.MAX_PARTICLES)

            permissible_states = np.zeros((self.MAX_PARTICLES, 3))
            pose = Pose()
            pose.orientation.x = 0.0
            pose.orientation.y = 0.0
            pose.orientation.z = 0.823
            pose.orientation.w = 0.568
            pose.position.x = 4.96825
            pose.position.y = -22.3357
            permissible_states[:, 0] = permissible_y[indices]
            permissible_states[:, 1] = permissible_x[indices]
            permissible_states[:, 2] = np.random.random(
                self.MAX_PARTICLES) * np.pi * 2.0

            Utils.map_to_world(permissible_states, self.map_info)
            #self.particles[:,0] = pose.position.x + np.random.normal(loc=0.0,scale=0.5,size=self.MAX_PARTICLES)
            #self.particles[:,1] = pose.position.y + np.random.normal(loc=0.0,scale=0.5,size=self.MAX_PARTICLES)
            #self.particles[:,2] = Utils.quaternion_to_angle(pose.orientation) + np.random.normal(loc=0.0,scale=0.4,size=self.MAX_PARTICLES)
            self.particles = permissible_states
            self.weights[:] = 1.0 / self.MAX_PARTICLES
    def initialize_global(self):
        self.state_lock.acquire()

        # Use self.permissible_region to get in-bounds states
        # Uniformally sample from in-bounds regions
        # Convert map samples (which are in pixels) to world samples (in meters/radians)
        #   Take a look at utils.py
        # Update particles in place
        # Update weights in place so that all particles have the same weight and the
        # sum of the weights is one.
        # YOUR CODE HERE

        permissible_x, permissible_y = np.where(self.permissible_region == 1)
        angle_step = 4
        permissible_step = angle_step * len(
            permissible_x) / self.particles.shape[0]
        indices = np.arange(0, len(permissible_x),
                            permissible_step)[:(self.particles.shape[0] /
                                                angle_step)]

        permissible_states = np.zeros((self.particles.shape[0], 3))

        for i in xrange(angle_step):
            permissible_states[i *
                               (self.particles.shape[0] / angle_step):(i + 1) *
                               (self.particles.shape[0] / angle_step),
                               0] = permissible_y[indices]
            permissible_states[i *
                               (self.particles.shape[0] / angle_step):(i + 1) *
                               (self.particles.shape[0] / angle_step),
                               1] = permissible_x[indices]
            permissible_states[i *
                               (self.particles.shape[0] / angle_step):(i + 1) *
                               (self.particles.shape[0] / angle_step),
                               2] = i * (2 * np.pi / angle_step)

        Utils.map_to_world(permissible_states, self.map_info)
        self.particles[:, :] = permissible_states[:, :]
        self.weights[:] = 1.0 / float(self.N_PARTICLES)

        self.state_lock.release()
Exemplo n.º 14
0
  def initialize_global(self):
    self.state_lock.acquire()
    
    # Use self.permissible_region to get in-bounds states
    # Uniformally sample from in-bounds regions
    # Convert map samples (which are in pixels) to world samples (in meters/radians)
    #   Take a look at utils.py
    # Update particles in place
    # Update weights in place so that all particles have the same weight and the 
    # sum of the weights is one.
    # YOUR CODE HERE
    permissible_poses = np.zeros((self.N_PARTICLES, 3))
    permissible_x, permissible_y = np.where(self.permissible_region == 1)
    permissible_poses[:, 0] = np.random.choice(permissible_x, self.N_PARTICLES)
    permissible_poses[:, 1] = np.random.choice(permissible_y, self.N_PARTICLES)
    permissible_poses[:, 2] = 2.0 * np.pi * np.random.random(self.N_PARTICLES)
    utils.map_to_world(permissible_poses, self.map_info)
    self.particles[:] = permissible_poses[:]
    self.weights[:] = 1.0 / self.N_PARTICLES 

    self.state_lock.release()
Exemplo n.º 15
0
    def set_particles(self, region):
        self.state_lock.acquire()
        # Get in-bounds locations
        permissible_x, permissible_y = region
        assert len(permissible_x) >= self.particles.shape[0]

        angle_step = 4  # The number of particles at each location, each with different rotation
        permissible_step = angle_step * len(
            permissible_x) / self.particles.shape[
                0]  # The sample interval for permissible states
        indices = np.arange(0, len(permissible_x), permissible_step)[:(
            self.particles.shape[0] /
            angle_step)]  # Indices of permissible states to use
        permissible_states = np.zeros(
            (self.particles.shape[0], 3))  # Proxy for the new particles

        # Loop through permissible states, each iteration drawing particles with
        # different rotation
        for i in xrange(angle_step):
            permissible_states[i *
                               (self.particles.shape[0] / angle_step):(i + 1) *
                               (self.particles.shape[0] / angle_step),
                               0] = permissible_y[indices]
            permissible_states[i *
                               (self.particles.shape[0] / angle_step):(i + 1) *
                               (self.particles.shape[0] / angle_step),
                               1] = permissible_x[indices]
            permissible_states[i *
                               (self.particles.shape[0] / angle_step):(i + 1) *
                               (self.particles.shape[0] / angle_step),
                               2] = i * (2 * np.pi / angle_step)

        # Transform permissible states to be w.r.t world
        Utils.map_to_world(permissible_states, self.map_info)

        # Reset particles and weights
        self.particles[:, :] = permissible_states[:, :]
        self.weights[:] = 1.0 / self.particles.shape[0]
        self.publish_particles(self.particles)
        self.state_lock.release()
Exemplo n.º 16
0
    def goalCB(self, msg):
        #rospy.loginfo('recieved goal msg')
        self.goal = np.array([(msg.pose.position.x, msg.pose.position.y, 0)])
        Utils.world_to_map(self.goal, self.map_info)
        self.goal = np.array((self.goal[0][0], 1300 - self.goal[0][1],
                              self.goal[0][2])).astype(int)
        #rospy.loginfo(self.goal)
        if self.environment[self.goal[1]][self.goal[0]] == 0:
            #rospy.loginfo(self.goal)

            if self.start != None and self.goal != None:
                #rospy.loginfo('getting path')
                path = np.array(
                    self.rrt(self.environment, self.start,
                             self.goal)).astype(float)
                #rospy.loginfo(path)
                Utils.map_to_world(path, self.map_info)
                path = path.astype(int)
                #rospy.loginfo('visualizing')
                self.visualize(path, self.start, self.goal)
        else:
            self.goal = None
Exemplo n.º 17
0
    def initialize_global(self):
        self.state_lock.acquire()

        # Use self.permissible_region to get in-bounds states
        # Uniformally sample from in-bounds regions
        # Convert map samples (which are in pixels) to world samples (in meters/radians)
        #   Take a look at utils.py
        # Update particles in place
        # Update weights in place so that all particles have the same weight and the
        # sum of the weights is one.
        # YOUR CODE HERE
        for i in range(len(self.particles)):
            in_bounds = 0
            w = 0
            h = 0
            while not in_bounds:
                w = np.random.randint(0, self.permissible_region.shape[0])
                h = np.random.randint(0, self.permissible_region.shape[1])
                in_bounds = self.permissible_region[w][h]
            self.particles[i] = [w, h, 0]
        Utils.map_to_world(self.particles, self.map_info)
        self.weights[:] = 1 / float(self.particles.shape[0])

        self.state_lock.release()
Exemplo n.º 18
0
    def find_frontiers(self) -> List[Pose]:
        """Find free edge frontiers in a probabilistic grid map.

        Returns
        -------
        frontiers : list of Pose
            A (possibly empty) List of free-edge frontiers.
        """

        # construct a free edge cell mask
        free_edge_cells = self._find_free_edge_cells(self.gridmap)

        # find frontiers representatives
        frontiers = self._find_free_edge_centroids(free_edge_cells,
                                                   self.gridmap.resolution)
        if not frontiers:
            return []

        # convert to world coordinates
        frontiers = map_to_world(frontiers, self.gridmap)
        return [point_to_pose(x, y) for x, y in frontiers]
Exemplo n.º 19
0
    # Potentially downsample permissible_x and permissible_y here

    print 'Creating particles'
    angle_step = 25
    particles = np.zeros((angle_step * permissible_x.shape[0], 3))
    for i in xrange(angle_step):
        particles[i * (particles.shape[0] / angle_step):(i + 1) *
                  (particles.shape[0] / angle_step), 0] = permissible_y[:]
        particles[i * (particles.shape[0] / angle_step):(i + 1) *
                  (particles.shape[0] / angle_step), 1] = permissible_x[:]
        particles[i * (particles.shape[0] / angle_step):(i + 1) *
                  (particles.shape[0] / angle_step),
                  2] = i * (2 * np.pi / angle_step)

    utils.map_to_world(particles, map_info)
    weights = np.ones(particles.shape[0]) / float(particles.shape[0])

    print 'Initializing sensor model'
    sm = SensorModel(scan_topic, laser_ray_step, exclude_max_range_rays,
                     max_range_meters, map_msg, particles, weights)

    # Give time to get setup
    rospy.sleep(1.0)

    # Load laser scan from bag
    bag = rosbag.Bag(bag_path)
    for _, msg, _ in bag.read_messages(topics=['/scan']):
        laser_msg = msg
        break
Exemplo n.º 20
0
    def plan_path(
        self,
        start: Pose,
        goal: Pose,
        radius: Optional[float] = None,
        simplify: bool = True,
        robust: bool = True,
    ) -> Tuple[Path, float]:
        """Plan a path from start to goal over a given map using A* algorithm.

        Parameters
        ----------
        start : Pose
            Start position in world coordinates.
        goal : Pose
            Goal position in world coordinates.
        radius : float, optional
            The final point in the found path is within the neighborhood of
            a given radius from the goal. Default `2 * robot_size`.
        simplify : bool, optional
            If True (default), simplifies the found path by reducing the amount
            of waypoints to the minimal necessary so that the path still doesn't
            collide with obstacles.
        robust : bool, optional
            If True (default), steers A* heuristic to avoid paths that are close to obstacles.

        Returns
        -------
        path : path
            The found path.
        length : float
            Path length (sum of distances between consecutive points).
        """
        if radius is None:
            radius = ASTAR_TOLERANCE_FACTOR * self.robot_size
        radius /= self.gridmap.resolution

        # transform start and goal to the useful format
        start, goal = pose_to_point(start), pose_to_point(goal)

        # transform start and goal from world coordinates to map coordinates
        start, goal = world_to_map([start, goal], self.gridmap)

        # steer the A* heuristic for robust planning
        def steered_heuristic(a: Tuple[int, int], b: Tuple[int, int]) -> float:
            return euclidean_distance(
                a, b) + OBSTACLE_PENALTY_FACTOR / self.dist_to_obstacles[a[1],
                                                                         a[0]]

        self.astar.heuristic = steered_heuristic if robust else euclidean_distance

        # find a path using A* search
        path = self.astar.search(self.maze,
                                 start,
                                 goal,
                                 neighborhood="N8",
                                 radius=radius)

        # no path found
        if len(path) < 2:
            return Path(), np.inf

        # simplify the found path
        if simplify:
            path = self._simplify_path(path, self.maze)

        # transform the path back to the world coordinates
        path = map_to_world(path, self.gridmap)

        # create the Path message
        path = points_to_path(path)

        # compute the path length
        length = path_length(path)

        return path, length
Exemplo n.º 21
0
def main():
    rospy.init_node("sensor_model", anonymous=True)  # Initialize the node

    bag_path = rospy.get_param(
        "~bag_path",
        '/home/tim/car_ws/src/lab2/bags/laser_scans/laser_scan1.bag')
    scan_topic = rospy.get_param("~scan_topic",
                                 "/scan")  # The topic containing laser scans
    laser_ray_step = int(rospy.get_param("~laser_ray_step")
                         )  # Step for downsampling laser scans (18 by default)
    # Whether to exclude rays that are beyond the max range (true by default)
    exclude_max_range_rays = bool(rospy.get_param("~exclude_max_range_rays"))
    max_range_meters = float(rospy.get_param(
        "~max_range_meters"))  # The max range of the laser (5.6 by default)

    print 'Bag path: ' + bag_path

    # Use the 'static_map' service (launched by MapServer.launch) to get the map
    print("Getting map from service: ", MAP_TOPIC)
    rospy.wait_for_service(MAP_TOPIC)
    map_msg = rospy.ServiceProxy(
        MAP_TOPIC,
        GetMap)().map  # The map, will get passed to init of sensor model
    map_info = map_msg.info  # Save info about map for later use

    # map_info example:
    # map_load_time:
    #     secs: 1541298847
    #     nsecs: 661081098
    # resolution: 0.019999999553
    # width: 3200
    # height: 3200
    # origin:
    #     position:
    #         x: -34.92
    #         y: -33.64
    #         z: 0.0
    #     orientation:
    #         x: 0.0
    #         y: 0.0
    #         z: 0.0
    #         w: 1.0

    print 'Creating permissible region'
    # Create numpy array representing map for later use
    # By default map has values 0: permissible, -1: unmapped, 100: blocked
    array_255 = np.array(map_msg.data).reshape(
        (map_msg.info.height, map_msg.info.width))  # shape (3200, 3200)
    permissible_region = np.zeros_like(
        array_255, dtype=bool)  # zeros - shape (3200, 3200)
    # Set the values of the permissible region to 1 and everything else remains 0s
    permissible_region[
        array_255 ==
        0] = 1  # Numpy array of dimension (map_msg.info.height, map_msg.info.width),
    # With values 0: not permissible, 1: permissible
    permissible_x, permissible_y = np.where(
        permissible_region == 1)  # both shapes (521088,)

    # Potentially downsample permissible_x and permissible_y here

    print 'Creating particles'
    angle_step = 25
    particles = np.zeros((angle_step * permissible_x.shape[0],
                          3))  # particles.shape (13027200, 3)
    for i in xrange(angle_step):
        particles[i * (particles.shape[0] / angle_step):(i + 1) *
                  (particles.shape[0] / angle_step), 0] = permissible_y[:]
        particles[i * (particles.shape[0] / angle_step):(i + 1) *
                  (particles.shape[0] / angle_step), 1] = permissible_x[:]
        particles[i * (particles.shape[0] / angle_step):(i + 1) *
                  (particles.shape[0] / angle_step),
                  2] = i * (2.0 * np.pi / angle_step)

    Utils.map_to_world(particles, map_info)
    weights = np.ones(particles.shape[0]) / float(
        particles.shape[0])  # weights.shape (13027200,)

    print 'Initializing sensor model'
    sm = SensorModel(scan_topic, laser_ray_step, exclude_max_range_rays,
                     max_range_meters, map_msg, particles, weights)

    # Give time to get setup
    rospy.sleep(1.0)

    # Load laser scan from bag
    bag = rosbag.Bag(bag_path)
    for _, msg, _ in bag.read_messages(topics=['/scan']):
        laser_msg = msg
        break

    w_min = np.amin(weights)
    w_max = np.amax(weights)

    pub_laser = rospy.Publisher(
        scan_topic, LaserScan,
        queue_size=1)  # Publishes the most recent laser scan
    print("Starting analysis, this could take awhile...")
    while not isinstance(sm.queries, np.ndarray):
        pub_laser.publish(laser_msg)
        rospy.sleep(1.0)

    rospy.sleep(1.0)  # Make sure there's enough time for laserscan to get lock

    print 'Going to wait for sensor model to finish'
    sm.state_lock.acquire()
    print 'Done, preparing to plot'
    print "weights before", weights
    weights = weights.reshape((angle_step, -1))
    print "weights after", weights
    weights = np.amax(weights, axis=0)
    print map_msg.info.height
    print map_msg.info.width
    print weights.shape
    w_min = np.amin(weights)
    w_max = np.amax(weights)
    print 'w_min = %f' % w_min
    print 'w_max = %f' % w_max
    weights = 0.9 * (weights - w_min) / (w_max - w_min) + 0.1

    img = np.zeros((map_msg.info.height, map_msg.info.width))
    for i in xrange(len(permissible_x)):
        img[permissible_y[i], permissible_x[i]] = weights[i]
    plt.imshow(img)
    plt.show()
Exemplo n.º 22
0
def get_plan(initial_pose, goal_pose, counter):
    # Create a publisher to publish the initial pose
    init_pose_pub = rospy.Publisher(
        INIT_POSE_TOPIC, PoseWithCovarianceStamped,
        queue_size=1)  # to publish init position x=2500, y=640
    # Create a publisher to publish the goal pose
    goal_pose_pub = rospy.Publisher(
        GOAL_POSE_TOPIC, PoseStamped,
        queue_size=1)  # create a publisher for goal pose

    map_img, map_info = utils.get_map(MAP_TOPIC)  # Get and store the map
    PWCS = PoseWithCovarianceStamped(
    )  # create a PoseWithCovarianceStamped() msg
    PWCS.header.stamp = rospy.Time.now()  # set header timestamp value
    PWCS.header.frame_id = "map"  # set header frame id value

    temp_pose = utils.map_to_world(initial_pose, map_info)  # init pose
    PWCS.pose.pose.position.x = temp_pose[0]
    PWCS.pose.pose.position.y = temp_pose[1]
    PWCS.pose.pose.position.z = 0
    PWCS.pose.pose.orientation = utils.angle_to_quaternion(
        temp_pose[2]
    )  # set msg orientation to [converted to queternion] value of the yaw angle in the look ahead pose from the path
    print "Pubplishing Initial Pose to topic", INIT_POSE_TOPIC
    print "Initial ", PWCS.pose
    init_pose_pub.publish(
        PWCS
    )  # publish initial pose, now you can add a PoseWithCovariance with topic of "/initialpose" in rviz

    if counter == 0:
        for i in range(0, 5):
            init_pose_pub.publish(PWCS)
            rospy.sleep(0.5)

    print "Initial Pose Set."
    # raw_input("Press Enter")

    PS = PoseStamped()  # create a PoseStamped() msg
    PS.header.stamp = rospy.Time.now()  # set header timestamp value
    PS.header.frame_id = "map"  # set header frame id value

    temp_pose = utils.map_to_world(goal_pose, map_info)  # init pose
    PS.pose.position.x = temp_pose[
        0]  # set msg x position to value of the x position in the look ahead pose from the path
    PS.pose.position.y = temp_pose[
        1]  # set msg y position to value of the y position in the look ahead pose from the path
    PS.pose.position.z = 0  # set msg z position to 0 since robot is on the ground
    PS.pose.orientation = utils.angle_to_quaternion(temp_pose[2])
    print "Pubplishing Goal Pose to topic", GOAL_POSE_TOPIC
    print "\nGoal ", PS.pose
    goal_pose_pub.publish(PS)

    print "Goal Pose Set"
    # raw_input("Press Enter")

    print "\nwaiting for plan ", str(counter), "\n"
    raw_plan = rospy.wait_for_message(PLAN_POSE_ARRAY_TOPIC, PoseArray)
    print "\nPLAN COMPUTED! of type:", type(raw_plan)

    path_part_pub = rospy.Publisher(
        "/CoolPlan/plan" + str(counter), PoseArray,
        queue_size=1)  # create a publisher for plan lookahead follower
    for i in range(0, 4):
        path_part_pub.publish(raw_plan)
        rospy.sleep(0.4)

    return raw_plan