st_time = time.time() hist, nbrs, mask, lat_enc, lon_enc, fut, op_mask, vehid, t, ds = data if args['use_cuda']: hist = hist.cuda() nbrs = nbrs.cuda() mask = mask.cuda() lat_enc = lat_enc.cuda() lon_enc = lon_enc.cuda() fut = fut.cuda() op_mask = op_mask.cuda() fut_pred, weight_ts_center, weight_ts_nbr, weight_ha = net( hist, nbrs, mask, lat_enc, lon_enc) l = maskedMSE(fut_pred, fut, op_mask) #maskedNLL(fut_pred, fut, op_mask) # Backprop and update weights optimizer.zero_grad() l.backward() a = torch.nn.utils.clip_grad_norm_(net.parameters(), 10) optimizer.step() #optimizer = tf.train.RMSPropOptimizer(learning_rate, decay).minimize(cost) # Track average train loss and average train time: batch_time = time.time() - st_time avg_tr_loss += l.item() # sum mse for 100 batches avg_tr_time += batch_time if i % 100 == 99: eta = avg_tr_time / 100 * (len(trSet) / batch_size - i ) # average time/batch * rest batches
def train_model(): args = parser.parse_args() print("------------- {} -------------".format(args.name)) print("Batch size : {}".format(args.batch_size)) print("Learning rate : {}".format(args.learning_rate)) print("Use Planning Coupled: {}".format(args.use_planning)) print("Use Target Fusion: {}".format(args.use_fusion)) ## Initialize network and optimizer PiP = pipNet(args) if args.use_cuda: PiP = PiP.cuda() optimizer = torch.optim.Adam(PiP.parameters(), lr=args.learning_rate) crossEnt = torch.nn.BCELoss() ## Initialize the log folder log_path = "./trained_models/{}/".format(args.name) if not os.path.exists(log_path): os.makedirs(log_path) if args.tensorboard: logger = SummaryWriter(log_path + 'train-pre{}-nll{}'.format(args.pretrain_epochs, args.train_epochs)) logger_val = SummaryWriter(log_path + 'validation-pre{}-nll{}'.format(args.pretrain_epochs, args.train_epochs)) ## Initialize training parameters pretrainEpochs = args.pretrain_epochs trainEpochs = args.train_epochs batch_size = args.batch_size ## Initialize data loaders print("Train dataset: {}".format(args.train_set)) trSet = highwayTrajDataset(path=args.train_set, targ_enc_size=args.social_context_size+args.dynamics_encoding_size, grid_size=args.grid_size, fit_plan_traj=False) print("Validation dataset: {}".format(args.val_set)) valSet = highwayTrajDataset(path=args.val_set, targ_enc_size=args.social_context_size+args.dynamics_encoding_size, grid_size=args.grid_size, fit_plan_traj=True) trDataloader = DataLoader(trSet, batch_size=batch_size, shuffle=True, num_workers=args.num_workers, collate_fn=trSet.collate_fn) valDataloader = DataLoader(valSet, batch_size=batch_size, shuffle=True, num_workers=args.num_workers, collate_fn=valSet.collate_fn) print("DataSet Prepared : {} train data, {} validation data\n".format(len(trSet), len(valSet))) print("Network structure: {}\n".format(PiP)) ## Training process for epoch_num in range( pretrainEpochs + trainEpochs ): if epoch_num == 0: print('Pretrain with MSE loss') elif epoch_num == pretrainEpochs: print('Train with NLL loss') ## Variables to track training performance: avg_time_tr, avg_loss_tr, avg_loss_val = 0, 0, 0 ## Training status, reclaim after each epoch PiP.train() PiP.train_output_flag = True for i, data in enumerate(trDataloader): st_time = time.time() nbsHist, nbsMask, planFut, planMask, targsHist, targsEncMask, targsFut, targsFutMask, lat_enc, lon_enc, _ = data if args.use_cuda: nbsHist = nbsHist.cuda() nbsMask = nbsMask.cuda() planFut = planFut.cuda() planMask = planMask.cuda() targsHist = targsHist.cuda() targsEncMask = targsEncMask.cuda() lat_enc = lat_enc.cuda() lon_enc = lon_enc.cuda() targsFut = targsFut.cuda() targsFutMask = targsFutMask.cuda() # Forward pass fut_pred, lat_pred, lon_pred = PiP(nbsHist, nbsMask, planFut, planMask, targsHist, targsEncMask, lat_enc, lon_enc) if epoch_num < pretrainEpochs: # Pre-train with MSE loss to speed up training l = maskedMSE(fut_pred, targsFut, targsFutMask) else: # Train with NLL loss l = maskedNLL(fut_pred, targsFut, targsFutMask) + crossEnt(lat_pred, lat_enc) + crossEnt(lon_pred, lon_enc) # Back-prop and update weights optimizer.zero_grad() l.backward() prev_vec_norm = torch.nn.utils.clip_grad_norm_(PiP.parameters(), 10) optimizer.step() # Track average train loss and average train time: batch_time = time.time()-st_time avg_loss_tr += l.item() avg_time_tr += batch_time # For every 100 batches: record loss, validate model, and plot. if i%100 == 99: eta = avg_time_tr/100*(len(trSet)/batch_size-i) epoch_progress = i * batch_size / len(trSet) print("Epoch no:",epoch_num+1, "| Epoch progress(%):",format(epoch_progress*100,'0.2f'), "| Avg train loss:",format(avg_loss_tr/100,'0.2f'), "| ETA(s):",int(eta)) if args.tensorboard: logger.add_scalar("RMSE" if epoch_num < pretrainEpochs else "NLL", avg_loss_tr / 100, (epoch_progress + epoch_num) * 100) ## Validatation during training: eval_batch_num = 20 with torch.no_grad(): PiP.eval() PiP.train_output_flag = False for i, data in enumerate(valDataloader): nbsHist, nbsMask, planFut, planMask, targsHist, targsEncMask, targsFut, targsFutMask, lat_enc, lon_enc, _ = data if args.use_cuda: nbsHist = nbsHist.cuda() nbsMask = nbsMask.cuda() planFut = planFut.cuda() planMask = planMask.cuda() targsHist = targsHist.cuda() targsEncMask = targsEncMask.cuda() lat_enc = lat_enc.cuda() lon_enc = lon_enc.cuda() targsFut = targsFut.cuda() targsFutMask = targsFutMask.cuda() if epoch_num < pretrainEpochs: # During pre-training with MSE loss, validate with MSE for true maneuver class trajectory PiP.train_output_flag = True fut_pred, _, _ = PiP(nbsHist, nbsMask, planFut, planMask, targsHist, targsEncMask, lat_enc, lon_enc) l = maskedMSE(fut_pred, targsFut, targsFutMask) else: # During training with NLL loss, validate with NLL over multi-modal distribution fut_pred, lat_pred, lon_pred = PiP(nbsHist, nbsMask, planFut, planMask, targsHist, targsEncMask, lat_enc, lon_enc) l = maskedNLLTest(fut_pred, lat_pred, lon_pred, targsFut, targsFutMask, avg_along_time=True) avg_loss_val += l.item() if i==(eval_batch_num-1): if args.tensorboard: logger_val.add_scalar("RMSE" if epoch_num < pretrainEpochs else "NLL", avg_loss_val / eval_batch_num, (epoch_progress + epoch_num) * 100) break # Clear statistic avg_time_tr, avg_loss_tr, avg_loss_val = 0, 0, 0 # Revert to train mode after in-process evaluation. PiP.train() PiP.train_output_flag = True ## Save the model after each epoch______________________________________________________________________________ epoCount = epoch_num + 1 if epoCount < pretrainEpochs: torch.save(PiP.state_dict(), log_path + "{}-pre{}-nll{}.tar".format(args.name, epoCount, 0)) else: torch.save(PiP.state_dict(), log_path + "{}-pre{}-nll{}.tar".format(args.name, pretrainEpochs, epoCount - pretrainEpochs)) # All epochs finish________________________________________________________________________________________________ torch.save(PiP.state_dict(), log_path+"{}.tar".format(args.name)) print("Model saved in trained_models/{}/{}.tar\n".format(args.name, args.name))
hist = hist.cuda() nbrs = nbrs.cuda() mask = mask.cuda() lat_enc = lat_enc.cuda() lon_enc = lon_enc.cuda() fut = fut.cuda() op_mask = op_mask.cuda() hist_grid = hist_grid.cuda() # Forward pass if params.use_maneuvers: fut_pred, lat_pred, lon_pred = net(hist, nbrs, mask, lat_enc, lon_enc, hist_grid, fut) # Pre-train with MSE loss to speed up training if epoch_num < pretrainEpochs: l = maskedMSE(fut_pred, fut, op_mask) else: # Train with NLL loss l = maskedNLL(fut_pred, fut, op_mask) + crossEnt( lat_pred, lat_enc) + crossEnt(lon_pred, lon_enc) avg_lat_acc += (torch.sum( torch.max(lat_pred.data, 1)[1] == torch.max( lat_enc.data, 1)[1])).item() / lat_enc.size()[0] avg_lon_acc += (torch.sum( torch.max(lon_pred.data, 1)[1] == torch.max( lon_enc.data, 1)[1])).item() / lon_enc.size()[0] else: fut_pred = net(hist, nbrs, mask, lat_enc, lon_enc, hist_grid, fut) if epoch_num < pretrainEpochs: l = maskedMSE(fut_pred, fut, op_mask) else:
tic = time.time() for ep in range(args['train_epoches']): running_loss = 0.0 for i, data in enumerate(trDataloader): hh, ff = data hh = hh[:, ::2, :].to(device) ff = ff[:, 4::5, :].to(device) ## zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize fut_pred = net(hh) op_mask = torch.ones(ff.shape) l = maskedMSE(fut_pred, ff, op_mask) l.backward() # a = torch.nn.utils.clip_grad_norm_(net.parameters(), 10) optimizer.step() # print statistics running_loss += l.item() if i % 1000 == 999: # print every 1000 mini-batches print('ep {}, {} batches, loss - {}'.format( ep + 1, i + 1, running_loss / 1000)) running_loss = 0.0 ###_____________________________________________________________________________________________________________________________________________ ## no validation ## save model