Exemplo n.º 1
0
def build_program(args,
                  is_train,
                  main_prog,
                  startup_prog,
                  py_reader_startup_prog,
                  sz,
                  trn_dir,
                  bs,
                  min_scale,
                  rect_val=False):

    dshape = [3, sz, sz]
    class_dim = 1000
    pyreader = None
    with fluid.program_guard(main_prog, startup_prog):
        with fluid.unique_name.guard():
            if is_train:
                with fluid.program_guard(main_prog, py_reader_startup_prog):
                    with fluid.unique_name.guard():
                        pyreader = fluid.layers.py_reader(
                            capacity=bs * DEVICE_NUM,
                            shapes=([-1] + dshape, (-1, 1)),
                            dtypes=('uint8', 'int64'),
                            name="train_reader_" + str(sz)
                            if is_train else "test_reader_" + str(sz),
                            use_double_buffer=True)
                input, label = fluid.layers.read_file(pyreader)
            else:
                input = fluid.data(
                    name="image", shape=[None, 3, 244, 244], dtype="uint8")
                label = fluid.data(name="label", shape=[None, 1], dtype="int64")
            cast_img_type = "float16" if args.fp16 else "float32"
            cast = fluid.layers.cast(input, cast_img_type)
            img_mean = fluid.layers.create_global_var(
                [3, 1, 1],
                0.0,
                cast_img_type,
                name="img_mean",
                persistable=True)
            img_std = fluid.layers.create_global_var(
                [3, 1, 1], 0.0, cast_img_type, name="img_std", persistable=True)
            # image = (image - (mean * 255.0)) / (std * 255.0)
            t1 = fluid.layers.elementwise_sub(cast, img_mean, axis=1)
            t2 = fluid.layers.elementwise_div(t1, img_std, axis=1)

            model = FastImageNet(is_train=is_train)
            predict = model.net(t2, class_dim=class_dim, img_size=sz)
            cost, pred = fluid.layers.softmax_with_cross_entropy(
                predict, label, return_softmax=True)
            if args.scale_loss > 1:
                avg_cost = fluid.layers.mean(x=cost) * float(args.scale_loss)
            else:
                avg_cost = fluid.layers.mean(x=cost)

            batch_acc1 = fluid.layers.accuracy(input=pred, label=label, k=1)
            batch_acc5 = fluid.layers.accuracy(input=pred, label=label, k=5)

            # configure optimize
            optimizer = None
            if is_train:
                total_images = args.total_images
                lr = args.lr

                epochs = [(0, 7), (7, 13), (13, 22), (22, 25), (25, 28)]
                bs_epoch = [bs * DEVICE_NUM for bs in [224, 224, 96, 96, 50]]
                bs_scale = [bs * 1.0 / bs_epoch[0] for bs in bs_epoch]
                lrs = [(lr, lr * 2), (lr * 2, lr / 4),
                       (lr * bs_scale[2], lr / 10 * bs_scale[2]),
                       (lr / 10 * bs_scale[2], lr / 100 * bs_scale[2]),
                       (lr / 100 * bs_scale[4], lr / 1000 * bs_scale[4]),
                       lr / 1000 * bs_scale[4]]

                boundaries, values = lr_decay(lrs, epochs, bs_epoch,
                                              total_images)

                optimizer = fluid.optimizer.Momentum(
                    learning_rate=fluid.layers.piecewise_decay(
                        boundaries=boundaries, values=values),
                    momentum=0.9)
                if args.fp16:
                    params_grads = optimizer.backward(avg_cost)
                    master_params_grads = utils.create_master_params_grads(
                        params_grads, main_prog, startup_prog, args.scale_loss)
                    optimizer.apply_gradients(master_params_grads)
                    utils.master_param_to_train_param(master_params_grads,
                                                      params_grads, main_prog)
                else:
                    optimizer.minimize(avg_cost)

    return avg_cost, optimizer, [batch_acc1, batch_acc5], pyreader
Exemplo n.º 2
0
def build_program(is_train, main_prog, startup_prog, args):
    pyreader = None
    class_dim = args.class_dim
    image_shape = [int(m) for m in args.image_shape.split(",")]

    trainer_count = args.dist_env["num_trainers"]
    device_num_per_worker = get_device_num()
    with fluid.program_guard(main_prog, startup_prog):
        pyreader = fluid.layers.py_reader(
            capacity=16,
            shapes=([-1] + image_shape, (-1, 1)),
            dtypes=('float32', 'int64'),
            name="train_reader" if is_train else "test_reader",
            use_double_buffer=True)
        with fluid.unique_name.guard():
            image, label = fluid.layers.read_file(pyreader)
            if args.fp16:
                image = fluid.layers.cast(image, "float16")
            model_def = models.__dict__[args.model](layers=50,
                                                    is_train=is_train)
            predict = model_def.net(image, class_dim=class_dim)
            cost, pred = fluid.layers.softmax_with_cross_entropy(
                predict, label, return_softmax=True)
            if args.scale_loss > 1:
                avg_cost = fluid.layers.mean(x=cost) * float(args.scale_loss)
            else:
                avg_cost = fluid.layers.mean(x=cost)

            batch_acc1 = fluid.layers.accuracy(input=pred, label=label, k=1)
            batch_acc5 = fluid.layers.accuracy(input=pred, label=label, k=5)

            optimizer = None
            if is_train:
                start_lr = args.lr
                end_lr = args.lr * trainer_count * args.multi_batch_repeat
                if os.getenv("FLAGS_selected_gpus"):
                    # in multi process mode, "trainer_count" will be total devices
                    # in the whole cluster, and we need to scale num_of nodes.
                    end_lr /= device_num_per_worker

                total_images = args.total_images / trainer_count
                step = int(total_images /
                           (args.batch_size * args.multi_batch_repeat) + 1)
                warmup_steps = step * 5  # warmup 5 passes
                epochs = [30, 60, 80]
                bd = [step * e for e in epochs]
                base_lr = end_lr
                lr = []
                lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
                print("start lr: %s, end lr: %s, decay boundaries: %s" %
                      (start_lr, end_lr, bd))

                # NOTE: we put weight decay in layers config, and remove
                # weight decay on bn layers, so don't add weight decay in
                # optimizer config.
                optimizer = fluid.optimizer.Momentum(
                    learning_rate=utils.learning_rate.lr_warmup(
                        fluid.layers.piecewise_decay(boundaries=bd, values=lr),
                        warmup_steps, start_lr, end_lr),
                    momentum=0.9)
                if args.fp16:
                    params_grads = optimizer.backward(avg_cost)
                    master_params_grads = utils.create_master_params_grads(
                        params_grads,
                        main_prog,
                        startup_prog,
                        args.scale_loss,
                        reduce_master_grad=args.reduce_master_grad)
                    optimizer.apply_gradients(master_params_grads)
                    utils.master_param_to_train_param(master_params_grads,
                                                      params_grads, main_prog)
                else:
                    optimizer.minimize(avg_cost)

    # prepare reader for current program
    prepare_reader(is_train, pyreader, args)

    return pyreader, avg_cost, batch_acc1, batch_acc5
Exemplo n.º 3
0
def get_model(args,
              is_train,
              main_prog,
              startup_prog,
              py_reader_startup_prog,
              sz,
              trn_dir,
              bs,
              min_scale,
              rect_val=False):

    _, reader, dshape, class_dim = _model_reader_dshape_classdim(
        args,
        is_train,
        val_bs=bs * args.gpus,
        sz=sz,
        trn_dir=trn_dir,
        min_scale=min_scale,
        rect_val=rect_val)

    pyreader = None
    batched_reader = None
    trainer_count = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))
    with fluid.program_guard(main_prog, startup_prog):
        with fluid.unique_name.guard():
            if is_train:
                with fluid.program_guard(main_prog, py_reader_startup_prog):
                    with fluid.unique_name.guard():
                        pyreader = fluid.layers.py_reader(
                            capacity=bs * args.gpus,
                            shapes=([-1] + dshape, (-1, 1)),
                            dtypes=('uint8', 'int64'),
                            name="train_reader_" +
                            str(sz) if is_train else "test_reader_" + str(sz),
                            use_double_buffer=True)
                input, label = fluid.layers.read_file(pyreader)
                pyreader.decorate_paddle_reader(
                    paddle.batch(reader, batch_size=bs))
            else:
                input = fluid.layers.data(name="image",
                                          shape=[3, 244, 244],
                                          dtype="uint8")
                label = fluid.layers.data(name="label",
                                          shape=[1],
                                          dtype="int64")
                batched_reader = paddle.batch(reader,
                                              batch_size=bs * args.gpus)
            cast_img_type = "float16" if args.fp16 else "float32"
            cast = fluid.layers.cast(input, cast_img_type)
            img_mean = fluid.layers.create_global_var([3, 1, 1],
                                                      0.0,
                                                      cast_img_type,
                                                      name="img_mean",
                                                      persistable=True)
            img_std = fluid.layers.create_global_var([3, 1, 1],
                                                     0.0,
                                                     cast_img_type,
                                                     name="img_std",
                                                     persistable=True)
            # image = (image - (mean * 255.0)) / (std * 255.0)
            t1 = fluid.layers.elementwise_sub(cast, img_mean, axis=1)
            t2 = fluid.layers.elementwise_div(t1, img_std, axis=1)

            model = ResNet(is_train=is_train)
            predict = model.net(t2, class_dim=class_dim, img_size=sz)
            cost, pred = fluid.layers.softmax_with_cross_entropy(
                predict, label, return_softmax=True)
            if args.scale_loss > 1:
                avg_cost = fluid.layers.mean(x=cost) * float(args.scale_loss)
            else:
                avg_cost = fluid.layers.mean(x=cost)

            batch_acc1 = fluid.layers.accuracy(input=pred, label=label, k=1)
            batch_acc5 = fluid.layers.accuracy(input=pred, label=label, k=5)

            # configure optimize
            optimizer = None
            if is_train:
                total_images = 1281167 / trainer_count

                epochs = [(0, 7), (7, 13), (13, 22), (22, 25), (25, 28)]
                bs_epoch = [224, 224, 96, 96, 50]
                lrs = [(1.0, 2.0), (2.0, 0.25),
                       (0.42857142857142855, 0.04285714285714286),
                       (0.04285714285714286, 0.004285714285714286),
                       (0.0022321428571428575, 0.00022321428571428573),
                       0.00022321428571428573]
                boundaries, values = lr_decay(lrs, epochs, bs_epoch,
                                              total_images)

                print("lr linear decay boundaries: ", boundaries,
                      " \nvalues: ", values)
                optimizer = fluid.optimizer.Momentum(
                    learning_rate=fluid.layers.piecewise_decay(
                        boundaries=boundaries, values=values),
                    momentum=0.9,
                    regularization=fluid.regularizer.L2Decay(1e-4))
                if args.fp16:
                    params_grads = optimizer.backward(avg_cost)
                    master_params_grads = utils.create_master_params_grads(
                        params_grads, main_prog, startup_prog, args.scale_loss)
                    optimizer.apply_gradients(master_params_grads)
                    utils.master_param_to_train_param(master_params_grads,
                                                      params_grads, main_prog)
                else:
                    optimizer.minimize(avg_cost)

                if args.memory_optimize:
                    fluid.memory_optimize(main_prog, skip_grads=True)

    return avg_cost, optimizer, [
        batch_acc1, batch_acc5
    ], batched_reader, pyreader, py_reader_startup_prog