Exemplo n.º 1
0
def pde_imp_mg_py(size_h, size_t, init, time, nums, eps, chk):
    """Evolve the PDE using implicit scheme, multigrid and Python"""
    n, m, u, t = size_h, size_t, init, time
    u = u.flatten()
    dx, dt = 1.0 / n, t / m
    lap = utils.mat_lap(n)
    eye = scipy.sparse.eye((n - 1)**2).tocsr()
    a = eye + dt / dx**2 * lap
    mats, mat_us, mat_dl_facs, ints = [], [], [], []
    temp, j = n, 0
    while True:
        a_u = -scipy.sparse.triu(a, k=1, format="csr")
        a_dl = scipy.sparse.tril(a.transpose(), k=0, format="csc")
        a_dl_fac = scipy.sparse.linalg.splu(a_dl, permc_spec="NATURAL")
        mats.append(a)
        mat_us.append(a_u)
        mat_dl_facs.append(a_dl_fac)
        j += 1
        if j >= len(nums):
            break
        temp //= 2
        i = utils.mat_int(temp)
        ints.append(i)
        a = i.transpose().dot(a.dot(i))
    ctr = 0
    for i in range(m):
        u, temp = solve_mg(mats, mat_us, mat_dl_facs, ints, nums, u, u, eps,
                           chk)
        ctr += temp
    u = u.reshape((n - 1, n - 1))
    return u, ctr
Exemplo n.º 2
0
def pde_imp_cg_c(size_h, size_t, init, time, eps):
    """Evolve the PDE using implicit scheme, conjugate gradient and C"""
    n, m, u, t = size_h, size_t, init, time
    u = u.flatten()
    dx, dt = 1.0 / n, t / m
    lap = utils.mat_lap(n)
    eye = scipy.sparse.eye((n - 1)**2).tocsr()
    a = eye + dt / dx**2 * lap
    ctr = exts.pde_imp_cg_wrapper(a.data, a.indices, a.indptr, u, eps, m)
    u = u.reshape((n - 1, n - 1))
    return u, ctr
Exemplo n.º 3
0
def pde_imp_cho_c(size_h, size_t, init, time):
    """Evolve the PDE using implicit scheme, Cholesky decomposition and C"""
    n, m, u, t = size_h, size_t, init, time
    u = u.flatten()
    dx, dt = 1.0 / n, t / m
    lap = utils.mat_lap(n)
    eye = scipy.sparse.eye((n - 1)**2).tocsr()
    a = eye + dt / dx**2 * lap
    ctr = exts.pde_imp_cho_wrapper(a.data, a.indices, a.indptr, u, n - 1, m)
    u = u.reshape((n - 1, n - 1))
    return u, ctr
Exemplo n.º 4
0
def pde_exp(size_h, size_t, init, time):
    """Evolve the PDE with explicit scheme and Python SuperLU binding"""
    n, m, u, t = size_h, size_t, init, time
    u = u.flatten()
    dx, dt = 1.0 / n, t / m
    lap = utils.mat_lap(n)
    eye = scipy.sparse.eye((n - 1)**2).tocsr()
    a = eye - dt / dx**2 * lap
    for i in range(m):
        u = a.dot(u)
    u = u.reshape((n - 1, n - 1))
    return u
Exemplo n.º 5
0
def pde_imp(size_h, size_t, init, time):
    """Evolve the PDE with implicit scheme and Python SuperLU binding"""
    n, m, u, t = size_h, size_t, init, time
    u = u.flatten()
    dx, dt = 1.0 / n, t / m
    lap = utils.mat_lap(n)
    eye = scipy.sparse.eye((n - 1)**2).tocsr()
    a = eye + dt / dx**2 * lap
    a_fac = scipy.sparse.linalg.splu(a.transpose())
    for i in range(m):
        u = a_fac.solve(u)
    u = u.reshape((n - 1, n - 1))
    return u
Exemplo n.º 6
0
def pde_imp_cg_py(size_h, size_t, init, time, eps):
    """Evolve the PDE using implicit scheme, conjugate gradient and Python"""
    n, m, u, t = size_h, size_t, init, time
    u = u.flatten()
    dx, dt = 1.0 / n, t / m
    lap = utils.mat_lap(n)
    eye = scipy.sparse.eye((n - 1)**2).tocsr()
    a = eye + dt / dx**2 * lap
    ctr = 0
    for i in range(m):
        u, temp = solve_cg(a, u, u, eps)
        ctr += temp
    u = u.reshape((n - 1, n - 1))
    return u, ctr
Exemplo n.º 7
0
def pde_cn(size_h, size_t, init, time):
    """Evolve the PDE with Crank-Nicolson scheme and Python SuperLU binding"""
    n, m, u, t = size_h, size_t, init, time
    u = u.flatten()
    dx, dt = 1.0 / n, t / m
    lap = utils.mat_lap(n)
    eye = scipy.sparse.eye((n - 1)**2).tocsr()
    a = eye - dt / dx**2 / 2.0 * lap
    b = eye + dt / dx**2 / 2.0 * lap
    b_fac = scipy.sparse.linalg.splu(b.transpose())
    for i in range(m):
        u = a.dot(u)
        u = b_fac.solve(u)
    u = u.reshape((n - 1, n - 1))
    return u
Exemplo n.º 8
0
def pde_imp_gs_py(size_h, size_t, init, time, eps, chk):
    """Evolve the PDE using implicit scheme, Gauss-Seidel and Python"""
    n, m, u, t = size_h, size_t, init, time
    u = u.flatten()
    dx, dt = 1.0 / n, t / m
    lap = utils.mat_lap(n)
    eye = scipy.sparse.eye((n - 1)**2).tocsr()
    a = eye + dt / dx**2 * lap
    a_u = -scipy.sparse.triu(a, k=1, format="csr")
    a_dl = scipy.sparse.tril(a.transpose(), k=0, format="csc")
    a_dl_fac = scipy.sparse.linalg.splu(a_dl, permc_spec="NATURAL")
    ctr = 0
    for i in range(m):
        u, temp = solve_gs(a, a_u, a_dl_fac, u, u, eps, chk)
        ctr += temp
    u = u.reshape((n - 1, n - 1))
    return u, ctr
Exemplo n.º 9
0
def pde_imp_mg_c(size_h, size_t, init, time, num, eps, chk):
    """Evolve the PDE using implicit scheme, multigrid and C"""
    n, m, u, t = size_h, size_t, init, time
    u = u.flatten()
    num = numpy.array(num, dtype=numpy.int32)
    dx, dt = 1.0 / n, t / m
    lap = utils.mat_lap(n)
    eye = scipy.sparse.eye((n - 1)**2).tocsr()
    a = eye + dt / dx**2 * lap
    datas, inds, ptrs = [], [], []
    datas.append(a.data)
    inds.append(a.indices)
    ptrs.append(a.indptr)
    temp = n
    for j in range(len(num) - 1):
        temp //= 2
        i = utils.mat_int(temp)
        datas.append(i.data)
        inds.append(i.indices)
        ptrs.append(i.indptr)
    ctr = exts.pde_imp_mg_wrapper(n, datas, inds, ptrs, u, num, eps, chk, m)
    u = u.reshape((n - 1, n - 1))
    return u, ctr
Exemplo n.º 10
0
def pde_imp_cho_py(size_h, size_t, init, time):
    """Evolve the PDE using implicit scheme, Cholesky decomposition and Python"""
    n, m, u, t = size_h, size_t, init, time
    u = u.flatten()
    dx, dt = 1.0 / n, t / m
    lap = utils.mat_lap(n)
    eye = scipy.sparse.eye((n - 1)**2).tocsr()
    a = eye + dt / dx**2 * lap
    a = a.todia()
    ab = numpy.zeros((n, (n - 1)**2))
    ab[0] = a.diagonal(k=0)
    ab[1, :-1] = a.diagonal(k=1)
    ab[n - 1, :1 - n] = a.diagonal(k=n - 1)
    l = scipy.linalg.cholesky_banded(ab, lower=True)
    l_t = numpy.zeros((n, (n - 1)**2))
    for i in range(n):
        l_t[n - i - 1, i:] = l[i, :(n - 1)**2 - i]
    ctr = 0
    for i in range(m):
        u = scipy.linalg.solve_banded((n - 1, 0), l, u)
        u = scipy.linalg.solve_banded((0, n - 1), l_t, u)
        ctr += 1
    u = u.reshape((n - 1, n - 1))
    return u, ctr