def resize_all(output_shape): resizer_1 = ds.resize(u.mul_shape(output_shape, 4)) resizer_2 = ds.resize(u.mul_shape(output_shape, 2)) resizer_3 = ds.resize(output_shape) def f(x): x = resizer_1(x) y = resizer_2(x) z = resizer_3(y) return x, y, z return f
def resize_all(output_shape): resizer_0 = ds.resize(u.mul_shape(output_shape, 16)) resizer_1 = ds.resize(u.mul_shape(output_shape, 8)) resizer_2 = ds.resize(u.mul_shape(output_shape, 4)) resizer_3 = ds.resize(u.mul_shape(output_shape, 2)) resizer_4 = ds.resize(output_shape) def f(x): w = resizer_0(x) x = resizer_1(x) y = resizer_2(x) z = resizer_3(y) v = resizer_4(x) return w, x, y, z, v return f
def prepare(dataset, input_shape, output_shape): resizer = ds.resize(u.mul_shape(output_shape, 32)) stream = ds.epochs(dataset.image_ids, epochs=1) stream = ds.stream( lambda x: (dataset._img_filenames[x], resizer(dataset.load_image(x))), stream) return stream
def resize_all(output_shape): resizer_orig = ds.resize(u.mul_shape(output_shape, 32)) resizer_0 = ds.resize(u.mul_shape(output_shape, 16)) resizer_1 = ds.resize(u.mul_shape(output_shape, 8)) resizer_2 = ds.resize(u.mul_shape(output_shape, 4)) resizer_3 = ds.resize(u.mul_shape(output_shape, 2)) resizer_4 = ds.resize(output_shape) def f(input_): input_ = resizer_orig(input_) w = resizer_0(input_) x = resizer_1(w) y = resizer_2(x) z = resizer_3(y) v = resizer_4(z) return input_, w, x, y, z, v return f
def resize_all(dataset, output_shape): out_shape_1 = u.mul_shape(output_shape, 4) resizer_1 = ds.resize(out_shape_1) resizer_2 = ds.resize(u.mul_shape(output_shape, 2)) resizer_3 = ds.resize(output_shape) def f((image_id, img)): cat = dataset.to_categorical(image_id) result = np.zeros(out_shape_1 + [cat.shape[2]]) for i in range(0, cat.shape[2]): result[:, :, i] = resizer_1(cat[:, :, i]) x = resizer_1(img) y = resizer_2(x) z = resizer_3(y) x = x.reshape(x.shape + (1, )) y = y.reshape(y.shape + (1, )) z = z.reshape(z.shape + (1, )) return result, x, y, z return f