Exemplo n.º 1
0
    def __getitem__(self, i):
        # Test
        if self.mode == 'test':
            # read data
            left = cv2.imread(self.left_fps[i])
            left = cv2.cvtColor(left, cv2.COLOR_BGR2RGB)
            left = utils.normalize_img(left)
            if self.augmentation:
                left = self.augment_img(left)
            return left, None

        # Train
        else:
            # read data
            left = cv2.imread(self.left_fps[i])
            left = cv2.cvtColor(left, cv2.COLOR_BGR2RGB)
            right = cv2.imread(self.right_fps[i])
            right = cv2.cvtColor(right, cv2.COLOR_BGR2RGB)
            left = utils.normalize_img(left)
            right = utils.normalize_img(right)

            # apply augmentations
            if self.augmentation:
                left, right = self.augment_pair(left, right)

            return left, right
Exemplo n.º 2
0
def inference(model_path, img_id):
    model = load_model(model_path)
    img = read_img(img_id)
    normalized = normalize_img(img)

    repeats_x = math.ceil(img.shape[0] / INPUT_SIZE)
    repeats_y = math.ceil(img.shape[1] / INPUT_SIZE)
    input_shape = (1, INPUT_SIZE, INPUT_SIZE, img.shape[2])
    result = np.zeros((img.shape[0], img.shape[1], len(CLASSES)))

    for idx_x in range(repeats_x):
        for idx_y in range(repeats_y):
            s_x = idx_x * INPUT_SIZE
            s_y = idx_y * INPUT_SIZE

            patch = normalized[s_x:s_x + INPUT_SIZE, s_y:s_y + INPUT_SIZE]
            input_img = np.zeros(input_shape)
            input_img[0, 0:patch.shape[0], 0:patch.shape[1]] = patch

            pred = model.predict(input_img)
            result[s_x:s_x + patch.shape[0], s_y:s_y + patch.shape[1]] \
                = pred[0, 0:patch.shape[0], 0:patch.shape[1]]

    result = np.where(result > INFERENCE_THRESHOLD, 1, 0)

    return result
Exemplo n.º 3
0
def create_dataset(config):
    (x_train, y_train), (x_test, y_test) = mnist.load_data()
    x_train = normalize_img(x_train)
    x_test = normalize_img(x_test)
    y_train_oh = scalar_to_onehot(y_train, 10)
    y_test_oh = scalar_to_onehot(y_test, 10)
    image_train = tf.data.Dataset.from_tensor_slices(x_train[..., np.newaxis])
    label_train = tf.data.Dataset.from_tensor_slices(y_train_oh)
    image_test = tf.data.Dataset.from_tensor_slices(x_test[..., np.newaxis])
    label_test = tf.data.Dataset.from_tensor_slices(y_test_oh)

    def tf_random_rotate(img_tensor):
        im_shape = img_tensor.shape
        random_rotate = partial(_random_rotate,
                                max_angle=config.data.test.rotation.max_angle)
        [
            image_tensor,
        ] = tf.py_function(random_rotate, [img_tensor], [tf.float32])
        image_tensor.set_shape(im_shape)
        return image_tensor

    if config.data.augmentation:
        gaussian_noise_aug = partial(_gaussain_noise, var=0.5)
        image_train = image_train.map(tf_random_rotate)
        image_train = image_train.map(gaussian_noise_aug)

    if config.data.test.rotation.apply:
        image_test = image_test.map(tf_random_rotate)

    elif config.data.test.noise.apply:
        gaussian_noise = partial(_gaussain_noise,
                                 var=config.data.test.noise.variance)
        image_test = image_test.map(gaussian_noise)

    train_dataset = tf.data.Dataset.zip((image_train, label_train))
    test_dataset = tf.data.Dataset.zip((image_test, label_test))

    train_dataset = train_dataset.batch(config.trainer.batch_size)
    test_dataset = test_dataset.batch(config.trainer.batch_size)

    return train_dataset, test_dataset
def get_train_data(train_img_ids, df, gs):
    x_train_list = []
    y_train_list = []

    for img_id in train_img_ids:
        img = read_img(img_id)
        x_train = normalize_img(img)
        y_train = generate_mask(x_train, img_id, df, gs)
        x_train_list.append(x_train)
        y_train_list.append(y_train)

    return (x_train_list, y_train_list)
Exemplo n.º 5
0
def run(flags_obj):
    """Run nin model"""
    if flags_obj.dataset == 'cifar-10':
        nin = define_nin(input_shape=(32, 32, 3))
        (x_train, y_train), (x_test,
                             y_test) = tf.keras.datasets.cifar10.load_data()
    elif flags.FLAGS.dataset == 'mnist':
        nin = define_nin(input_shape=(28, 28, 1))
        (x_train, y_train), (x_test,
                             y_test) = tf.keras.datasets.mnist.load_data()
    else:
        raise Exception('Dataset must be "cifar-10" or "mnist"')
    train_size = x_train.shape[0]
    test_size = x_test.shape[0]

    x_train = normalize_img(x_train.astype('float32'))
    x_train = normalize_img(x_train.astype('float32'))
    train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
    test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test))
    train_dataset = train_dataset.shuffle(10000).batch(
        flags_obj.batch_size).repeat()
    test_dataset = test_dataset.batch(flags_obj.batch_size).repeat()

    nin.compile(
        optimizer=tf.keras.optimizers.Adam(lr=flags_obj.learning_rate),
        loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
        metrics=['accuracy'])

    log_dir = './logs/fit' + datetime.datetime.now().strftime('%Y%m%d-%H%M%S')
    tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir,
                                                          histogram_freq=1)
    nin.fit(train_dataset,
            epochs=flags_obj.epoch,
            steps_per_epoch=train_size // flags_obj.batch_size,
            validation_data=test_dataset,
            validation_steps=test_size // flags_obj.batch_size,
            callbacks=[tensorboard_callback])
Exemplo n.º 6
0
def get_data(path, center_cropping=True, normalization=True):
    img_path_list = [os.path.join(path, file) for file in os.listdir(path)]
    img_data = []
    for img_path in img_path_list:
        if center_cropping:
            img = center_crop_img(cv2.imread(img_path), IMG_SIZE)
        else:
            img = cv2.resize(cv2.imread(img_path), (IMG_SIZE, IMG_SIZE),
                             interpolation=cv2.INTER_AREA)
        if img is None:
            continue
        if normalization:
            img = normalize_img(img)
        img_data.append(img.reshape(-1))
    return np.array(img_data)
Exemplo n.º 7
0
def main_step(model, dl, device):
    confusion_matrix = torch.zeros(3, 3, dtype=torch.int32).to(device)
    for v, b in enumerate(dl):
        X, y = b
        if device == torch.device('cuda'):
            X, y = X.to(device), y.to(device)
        image = [X.squeeze_(0)]  # remove the batch dimension
        X = utils.normalize_img(image[0], device=device)
        _, pred_scores, _ = model(image)
        # predicted class scores
        confusion_matrix[torch.nonzero(y.squeeze_(0) > 0).item(),
                         pred_scores[0]['final_scores'].argmax().item()] += 1
    print("------------------------------------------")
    print("Confusion Matrix for 3-class problem, a total of {0:d} images:".
          format(len(dl)))
    print("0: Control, 1: Normal Pneumonia, 2: COVID")
    print(confusion_matrix)
    print("------------------------------------------")
    # confusion matrix
    cm = confusion_matrix.float()
    cm[0, :].div_(cm[0, :].sum())
    cm[1, :].div_(cm[1, :].sum())
    cm[2, :].div_(cm[2, :].sum())
    print("------------------------------------------")
    print("Class Sensitivity:")
    print(cm)
    print("------------------------------------------")
    print('Overall accuracy:')
    oa = confusion_matrix.diag().float().sum().div(confusion_matrix.sum())
    print(oa)
    cm_spec = confusion_matrix.float()
    cm_spec[:, 0].div_(cm_spec[:, 0].sum())
    cm_spec[:, 1].div_(cm_spec[:, 1].sum())
    cm_spec[:, 2].div_(cm_spec[:, 2].sum())
    # Class weights: 0, 1, 2
    cw = torch.tensor([0.45, 0.35, 0.2], dtype=torch.float).to(device)
    print("------------------------------------------")
    print('F1 score:')
    f1_score = 2 * cm.diag().mul(
        cm_spec.diag()).div(cm.diag() + cm_spec.diag()).dot(cw).item()
    print(f1_score)
    # Confusion matrix, class sensitivity, overall accuracy and F1 score
    return confusion_matrix, cm, oa, f1_score
Exemplo n.º 8
0
 def __next__(self):
     with tf.device('/gpu:0'):
         batch_image = np.zeros(
             (cfg.BATCHSIZE, cfg.INPUTHEIGHT, cfg.INPUTWIDTH, 1))
         batch_label = np.zeros(
             (cfg.BATCHSIZE, cfg.INPUTHEIGHT // cfg.DOWNSCALE,
              cfg.INPUTWIDTH // cfg.DOWNSCALE, 5))
         if self.batch_done < self.batch_num:
             cnt = 0
             while cnt < cfg.BATCHSIZE:
                 prefix = self.file_list[self.batch_done * cfg.BATCHSIZE +
                                         cnt]
                 curr_img = utils.normalize_img(
                     cv2.resize(cv2.imread(
                         os.path.join(cfg.DATAPATH, prefix + '.png'),
                         cv2.IMREAD_GRAYSCALE),
                                (cfg.INPUTWIDTH, cfg.INPUTHEIGHT),
                                interpolation=cv2.INTER_LANCZOS4))
                 curr_img = np.expand_dims(curr_img, -1)
                 batch_image[cnt] = curr_img
                 if prefix in self.json_list:
                     curr_jsn = json.load(
                         open(os.path.join(cfg.DATAPATH, prefix + '.json')))
                     curr_lbl = utils.jbox_2_label(
                         (cfg.INPUTWIDTH // cfg.DOWNSCALE,
                          cfg.INPUTHEIGHT // cfg.DOWNSCALE), curr_jsn,
                         self.anchor)
                     batch_label[cnt] = np.swapaxes(curr_lbl, 0, 1)
                 else:
                     batch_label[cnt] = np.zeros(
                         (cfg.INPUTHEIGHT // cfg.DOWNSCALE,
                          cfg.INPUTWIDTH // cfg.DOWNSCALE, 5))
                 cnt += 1
             self.batch_done += 1
             return batch_image, batch_label
         else:
             self.batch_done = 0
             random.shuffle(self.file_list)
             raise StopIteration
Exemplo n.º 9
0
k = 0
IMG_HEIGHT = 256
IMG_WIDTH = 256
list_shapes = []

print('Reading train and val..')
for i in range(total_train):
	print(i)
	img_path = train_fold + '/' + train_ids[i] + '/images/' + train_ids[i] + '.png'
	img = cv2.imread(img_path,1)  #256 x 256 x 3?
	# pdb.set_trace()
	mask = create_mask(train_fold + '/' + train_ids[i], shape = (img.shape[0], img.shape[1],1))
	print(mask.shape)
	old_shape = img.shape
	img = np.dstack([normalize_img(img[:,:,q]) for q in range(3) ])
	if (img.shape != (IMG_HEIGHT, IMG_WIDTH, 3)): # resize it
		img = resize_img(img, shape = (IMG_HEIGHT, IMG_WIDTH, 3))
		mask = resize_img(mask, shape = (IMG_HEIGHT, IMG_WIDTH,1))
		# if img.shape in list_shapes:
		# 	pass
		# else:
		# 	list_shapes.append(img.shape)
	# pdb.set_trace()
	# cv2.imshow('image',img)
	# cv2.waitKey(0)
	# cv2.imshow('mask',mask)
	# cv2.waitKey(0)
	# pdb.set_trace()

	if i<n_train:
Exemplo n.º 10
0
def step(stage, e, max_loss):
    epoch_loss_classification_indep = 0
    epoch_loss_segmentation = 0
    # repeat the total number of minibatches in the classifer dataset
    total_batches = int(len(dataloader_classification_covid) / batch_size)
    for r in range(total_batches):
        total_classifier_loss = 0
        optimizer.zero_grad()
        rand_im_segment_ind = torch.randint(len(dataloader_covid),
                                            size=(1, )).item()
        b = dataloader_covid.dataset[rand_im_segment_ind]
        X, y = b
        if device == torch.device('cuda'):
            X, y['labels'], y['boxes'], y['masks'] = X.to(
                device), y['labels'].to(device), y['boxes'].to(
                    device), y['masks'].to(device)
        X = utils.normalize_img(X, device=device)
        images = [X]
        targets = []
        lab = {}
        lab['boxes'] = y['boxes']
        lab['labels'] = y['labels']
        lab['masks'] = y['masks']
        # train segmentation and classification or only classification?
        targets.append(lab)
        if len(targets[0]['boxes']):
            # pass
            attn_classifier.train()
            attn_classifier.attn_layer.eval()
            loss, _, _ = attn_classifier(images, targets)
            total_seg_loss = 0
            for k in loss.keys():
                total_seg_loss += loss[k]
            # exclude all classification box and mask layers in RoI
            for _n, _p in attn_classifier.named_parameters():
                if 's2' in _n or 'attn' in _n:
                    _p.grad = None
            # only if better
            epoch_loss_segmentation += total_seg_loss.item()
            if total_seg_loss.item() < max_loss:
                utils.copy_weights(attn_classifier)
            total_seg_loss.backward()
            max_loss = total_seg_loss.item()
            optimizer.step()
            optimizer.zero_grad()
            torch.cuda.empty_cache()
        else:
            total_seg_loss = 0
        # set all to eval, then switch back parameters upgrade
        # compute the image loss
        rand_im_class_ind = torch.randint(len(dataloader_classification_covid),
                                          size=(1, )).item()
        bt = dataloader_classification_covid.dataset[rand_im_class_ind]
        attn_classifier.eval()
        attn_classifier.backbone.train()
        attn_classifier.attn_layer.train()
        X_cl, y_cl = bt
        # print('targ', y_cl)
        if device == torch.device('cuda'):
            X_cl, y_cl = X_cl.to(device), y_cl.to(device)
        X_cl = X_cl.squeeze(0)
        X_cl = utils.normalize_img(X_cl, device=device)
        image = [X_cl]  # remove the batch dimension
        lab = dict(
            image_label=y_cl.squeeze(0)
        )  # This is not used within thge model, keep it for the correct operations
        _, predict_score, _ = attn_classifier(image, targets=lab)
        # append the feature vector and its class
        correct_class_str = lab['image_label']
        #print('pred', predict_score)
        classifier_loss = F.binary_cross_entropy_with_logits(
            predict_score[0]['final_scores'].squeeze(0), y_cl)
        total_classifier_loss += classifier_loss
        total_classifier_loss.backward()
        for _n, _p in attn_classifier.named_parameters():
            if 'backbone' not in _n and 'attn' not in _n:
                _p.grad = None
        optimizer.step()
        optimizer.zero_grad()
        torch.cuda.empty_cache()
        epoch_loss_classification_indep += total_classifier_loss
    # save model?
    if not e % save_every:
        attn_classifier.eval()
        state = {
            'epoch': str(e),
            'model_weights': attn_classifier.state_dict(),
            'optimizer_state': optimizer.state_dict(),
            'lrate': 1e-5
        }
        torch.save(
            state,
            os.path.join("saved_models",
                         bbn + "_16_4class_lstm_attn_ckpt_" + str(e) + ".pth"))
        attn_classifier.train()
    epoch_loss_classification_indep = epoch_loss_classification_indep / total_batches
    epoch_loss_segmentation = epoch_loss_segmentation / len(dataloader_covid)
    # print(epoch_loss)
    # print('total!', tots_pos, tots_neg)
    return epoch_loss_classification_indep, epoch_loss_segmentation, max_loss
Exemplo n.º 11
0
attn_classifier.backbone.train()
attn_classifier.attn_layer.train()

if device == torch.device('cuda'):
    attn_classifier = attn_classifier.to(device)
start = time.time()
batch_size = 1
confusion_matrix = torch.zeros(3, 3, dtype=torch.int32).to(device)

for id, b in enumerate(dataloader_classification_covid):
    X, y = b
    #print(X)
    if device == torch.device('cuda'):
        X, y = X.to(device), y.to(device)
    image = [X.squeeze_(0)]  #remove the batch dimension
    utils.normalize_img(image[0], device=device)
    _, predict_score, _ = attn_classifier(image, targets=None)
    pred_class = predict_score[0]['final_scores'].argmax()
    confusion_matrix[torch.nonzero(y.view(-1) > 0).item(), pred_class] += 1

end = time.time()
total = end - start
print(total)

cm = confusion_matrix.float()
print(cm, cm.sum())
print(cm.diagonal().sum().div(cm.sum()).item())
cm[0, :].div_(cm[0, :].sum())
cm[1, :].div_(cm[1, :].sum())
cm[2, :].div_(cm[2, :].sum())
print(cm)