Exemplo n.º 1
0
def pixel_shuffle(input, upscale_factor):
    _tuple = ntuple(2)
    upscale_factor = _tuple(upscale_factor)
    batch_size, in_channel, in_height, in_width = input.size()
    out_channel = in_channel // (upscale_factor[0] * upscale_factor[1])
    out_height = in_height * upscale_factor[0]
    out_width = in_width * upscale_factor[1]
    input_view = input.reshape(batch_size, out_channel, upscale_factor[0],
                               upscale_factor[1], in_height, in_width)
    shuffle_out = input_view.permute(0, 1, 4, 2, 5,
                                     3).reshape(batch_size, out_channel,
                                                out_height, out_width)
    return shuffle_out
Exemplo n.º 2
0
def pixel_unshuffle(input, downscale_factor):
    _tuple = ntuple(2)
    downscale_factor = _tuple(downscale_factor)
    batch_size, in_channel, in_height, in_width = input.size()
    out_channel = in_channel * (downscale_factor[0] * downscale_factor[1])
    out_height = in_height // downscale_factor[0]
    out_width = in_width // downscale_factor[1]
    input_view = input.reshape(batch_size, in_channel, out_height,
                               downscale_factor[0], out_width,
                               downscale_factor[1])
    shuffle_out = input_view.permute(0, 1, 3, 5, 2,
                                     4).reshape(batch_size, out_channel,
                                                out_height, out_width)
    return shuffle_out
 def make_cell(self):
     cell_info = copy.deepcopy(self.cell_info)
     cell = nn.ModuleList([nn.ModuleDict({}) for _ in range(cell_info['num_layers'])])
     _ntuple = ntuple(cell_info['num_layers'])
     cell_info['sharing_rates'] = _ntuple(cell_info['sharing_rates'])
     for i in range(cell_info['num_layers']):
         cell_in_info = {'cell': 'oConv2d', 'input_size': (cell_info['input_size'], cell_info['output_size']),
                         'output_size': ((cell_info['output_size'],) * 3,(cell_info['output_size'],) * 3),
                         'kernel_size': cell_info['kernel_size'], 'stride': cell_info['stride'],
                         'padding': cell_info['padding'], 'sharing_rates': cell_info['sharing_rates'][i],
                         'bias': cell_info['bias'], 'normalization': 'none', 'activation': 'none'}
         cell[i]['in'] = Cell(cell_in_info)
         cell[i]['activation'] = Cell({'cell': 'Activation', 'mode': cell_info['activation']})
         cell[i]['dropout'] = Cell({'cell': 'Dropout', 'p': cell_info['dropout']})
         cell_info['input_size'] = cell_info['output_size']
     return cell
Exemplo n.º 4
0
 def __init__(self,
              in_channels,
              out_channels,
              kernel_size,
              stride=1,
              padding=0,
              dilation=1,
              sharing_rates=0,
              bias=True):
     _nutple = ntuple(2)
     kernel_size = _nutple(kernel_size)
     stride = _nutple(stride)
     padding = _nutple(padding)
     dilation = _nutple(dilation)
     super(oConv2d, self).__init__(in_channels, out_channels, kernel_size,
                                   stride, padding, dilation, False,
                                   _nutple(0), sharing_rates, bias)
 def append(self, result, tag, n=1, mean=True):
     for k in result:
         name = '{}/{}'.format(tag, k)
         self.tracker[name] = result[k]
         if mean:
             if isinstance(result[k], Number):
                 self.counter[name] += n
                 self.mean[name] = ((self.counter[name] - n) * self.mean[name] + n * result[k]) / self.counter[name]
             elif isinstance(result[k], Iterable):
                 if name not in self.mean:
                     self.counter[name] = [0 for _ in range(len(result[k]))]
                     self.mean[name] = [0 for _ in range(len(result[k]))]
                 _ntuple = ntuple(len(result[k]))
                 n = _ntuple(n)
                 for i in range(len(result[k])):
                     self.counter[name][i] += n[i]
                     self.mean[name][i] = ((self.counter[name][i] - n[i]) * self.mean[name][i] + n[i] *
                                           result[k][i]) / self.counter[name][i]
             else:
                 raise ValueError('Not valid data type')
     return
Exemplo n.º 6
0
    parser.add_argument('-p', '--prefix', default='model', type=str)
    parser.add_argument('-V', '--vocab', default='abcd', type=str)
    parser.add_argument('-g', '--target', default='redrum', type=str)
    parser.add_argument('-T', '--test_length', action='store_true')
    parser.add_argument('-c', '--checkpoint', default=500, type=int)
    parser.add_argument('-P', '--plot', action='store_true')
    args = parser.parse_args()

    if args.sample_fn == 'identity':
        SAMPLE_FN = u.identity
    elif args.sample_fn == 'reverse':
        SAMPLE_FN = u.reverse
    elif args.sample_fn == 'double':
        SAMPLE_FN = u.double
    elif args.sample_fn == 'triple':
        SAMPLE_FN = lambda x: u.ntuple(x, n=3)
    elif args.sample_fn == 'quadruple':
        SAMPLE_FN = lambda x: u.ntuple(x, n=4)
    elif args.sample_fn == 'quintuple':
        SAMPLE_FN = lambda x: u.ntuple(x, n=5)
    elif args.sample_fn == 'reversedouble':
        SAMPLE_FN = u.reversedouble
    elif args.sample_fn == 'skipchar1':
        SAMPLE_FN = lambda x: u.skipchar(x, skip=1)
    elif args.sample_fn == 'skipchar2':
        SAMPLE_FN = lambda x: u.skipchar(x, skip=2)
    elif args.sample_fn == 'skipchar3':
        SAMPLE_FN = lambda x: u.skipchar(x, skip=3)
    else:
        raise ValueError('non exisiting fn [%s]' % args.sample_fn)