Exemplo n.º 1
0
    def compute(self, X, r=None):
        N = len(X)

        r_array = pairwise_distance(X, X)
        mean_dist = r_array.mean()
        r_array_n = r_array / mean_dist

        r_bin_edges = logspace(log10(self.r_inner), log10(self.r_outer), self.nbins_r)

        r_array_q = zeros((N, N), dtype=int)
        for m in xrange(self.nbins_r):
            r_array_q += (r_array_n < r_bin_edges[m])

        fz = r_array_q > 0

        theta_array = self._get_angles(X)
        # 2Pi shifted
        theta_array_2 = theta_array + 2 * math.pi * (theta_array < 0)
        theta_array_q = int_(1 + floor(theta_array_2 / (2 * math.pi / self.nbins_theta)))
        # norming by mass(mean) angle v.0.1 ############################################
        # By Andrey Nikishaev
        # theta_array_delta = theta_array - theta_array.mean()
        # theta_array_delta_2 = theta_array_delta + 2*math.pi * (theta_array_delta < 0)
        # theta_array_q = 1 + floor(theta_array_delta_2 /(2 * math.pi / self.nbins_theta))
        ################################################################################

        BH = zeros((N, self.nbins))
        for i in xrange(N):
            sn = zeros((self.nbins_r, self.nbins_theta))
            for j in xrange(N):
                if (fz[i, j]):
                    sn[r_array_q[i, j] - 1, theta_array_q[i, j] - 1] += 1
            BH[i] = sn.reshape(self.nbins)

        return BH
Exemplo n.º 2
0
    def wFM_on_sphere(self, inputs):

        #         print("---------------------------------\n[wFMLayer]")
        #         print("===\nSize: {}".format(self.w.size()))
        #         print("===\nWeight: \n{}\n".format(self.w))
        #         print("---------------------------------\n")

        # Get Dimensions of Input
        B, N, D, C = inputs.shape
        v = self.conv(inputs)
        inputs = inputs.contiguous()
        inputs = inputs.view(B, N, D * C)

        # Downsampling
        if self.down_sample_rate != 1:
            inputs = down_sampling(inputs, v.squeeze(),
                                   int(N * self.down_sample_rate))
            N = int(N * self.down_sample_rate)
        inputs = inputs.view(B, N, D, C)

        # Get KNN Matrix
        adj = utils.pairwise_distance(inputs)

        print("---------------------------------\n[Adj Matrix")
        print(adj)
        print("---------------------------------\n")

        knn_matrix = utils.knn(adj, k=self.k, include_myself=True)
        knn_matrix = torch.Tensor(knn_matrix).long()

        idx = torch.arange(
            B
        ) * N  # IDs for later processing, used because we flatten the tensor
        idx = idx.view((B, 1, 1))  # reshape to be added to knn indices

        # Combine in * k and normalize there
        # Get [B * N * K * D * C]
        k2 = knn_matrix + idx
        ptcld = inputs.view(B * N, D, C)  # [(B*N) * (D*C)]
        ptcld = ptcld.view(B * N, D * C)
        gathered = ptcld[k2]  # [B * N * K * (D*C)]
        gathered = gathered.view(B, N, self.k, D, C)  # [B * N * K * D * C]

        gathered = gathered.permute(0, 1, 3, 4, 2)  # [B * N * D * C * K]

        weighted = gathered * weight_normalize(self.w1,
                                               dim=1)  # [B * N * D * C * K]
        weighted = torch.sum(weighted, dim=-1)  # [B * N * D * C]
        weighted = torch.matmul(weighted,
                                weight_normalize(self.w2,
                                                 dim=0))  # [B * N * D * Cout]

        return weighted
Exemplo n.º 3
0
def calc_laplacian_mat(points, k):
    num_of_points = points.shape[0]
    adj_mat = utls.pairwise_distance(points, points)
    distance, indices = utls.knn(adj_mat, k=k)
    dst_1_k = 1/tf.cast(distance, dtype=tf.float64)[:, 1:]
    dst_0 = tf.reduce_sum(dst_1_k, axis=1, keepdims=True)
    distance = tf.concat((-dst_0, dst_1_k), axis=1)
    data = tf.reshape(distance, [-1])
    columns = tf.reshape(indices, [-1, 1])
    rows = tf.reshape(tf.range(num_of_points), [-1, 1])
    rows = tf.keras.backend.repeat(rows, k)
    rows = tf.reshape(rows, [-1, 1])
    index = tf.cast(tf.concat((rows, columns), axis=1), dtype=tf.int64)

    return tf.sparse.reorder(tf.SparseTensor(indices=index, values=data, dense_shape=(num_of_points, num_of_points)))
 def setup(self, bottom, top):
     self.numNN = int(self.param_str)
     self.numpts = int(bottom[0].data.shape[3])
     self.point_cloud = np.squeeze(bottom[0].data).transpose(0, 2, 1)
     adj = utils.pairwise_distance(self.point_cloud)
     self.nn_idx = utils.knn(adj, k=self.numNN)
Exemplo n.º 5
0
def main():
    logger = setup_logger('Data_Generation')
    args = load_args()
    logger.info("Received Args: \n{}".format(args))

    ##########################################################
    #                      Data Loading                      #
    ##########################################################

    logger.info("Start Loading MNIST Data and Configurations")

    f_train = h5py.File(args.train_file_path)
    f_test = h5py.File(args.test_file_path)

    logger.info("--> Loading Configurations")
    if args.test:
        f_data = f_test
        output_file_name = "test.gz"
        output_path = join(args.output_prefix, "test")
    else:
        f_data = f_train
        output_file_name = "train.gz"
        output_path = join(args.output_prefix, "train")

    """ Data Size (num of images to be loaded)"""
    if args.demo:
        data_size = args.demo # Number of images to be loaded
        output_file_name = "demo_" + output_file_name
        output_path = join(args.output_prefix, "demo")
    else:
        data_size = f_data['data'].shape[0]
    
    """ Number of Points (MNIST => 512)"""
    num_points = f_data['data'].shape[1]

    """ Load Labels """
    logger.info("--> Loading Labels")
    np_labels = np.array(f_data['labels'])[0:data_size] # [1, 2, 3]
    tensor_labels = torch.from_numpy(np_labels)

    """ Load Raw Data Set """
    logger.info("--> Loading Data Set")
    np_dataset = np.array(f_data['data'])[0:data_size] # (data_size, 512, 2)
    tensor_dataset = torch.from_numpy(np_dataset).float() # convert from numpy.ndarray to torch.Tensor

    """ Adjust Data Dimension """
    if tensor_dataset.shape[-1] == 2:
        """ 
        if deal with 2D point set, have to add one dimension as z dimension
        z dimension should be padded with 0, since point is ranged from -1 to 1, 0 is the average value
        """
        # (train_size * num_points, 3) -> z-dimension additionally padded by 0 -> (x, y, 0)
        logger.info("--> Data Dimension Adjustment Operated")
        zero_padding = torch.zeros((data_size, num_points, 1), dtype=tensor_dataset.dtype)
        tensor_dataset = torch.cat((tensor_dataset, zero_padding), -1) # (data_size, num_points, 3)

    logger.info("Finish Loading MNIST Data and Basic Configuration")

    ##########################################################
    #                     Adjacent Matrix                    #
    ##########################################################

    logger.info("Start Computing Adjacent Matrix")

    """ Adjacent Matrix """
    batch_size = args.batch_size
    start, end = 0, args.batch_size

    total_count = tensor_dataset.size()[0]
    adj_tensor_datasets = []
    while end < tensor_dataset.size()[0]:
        tensor_dataset_subset = tensor_dataset[start : end]
        tensor_dataset_subset_adj = utils.pairwise_distance(tensor_dataset_subset)
        adj_tensor_datasets.append(tensor_dataset_subset_adj)
        progress(end, total_count)
        start += batch_size
        end += batch_size
    tensor_dataset_subset = tensor_dataset[start: tensor_dataset.size()[0]]
    tensor_dataset_subset_adj = utils.pairwise_distance(tensor_dataset_subset)
    adj_tensor_datasets.append(tensor_dataset_subset_adj)
    progress(total_count, total_count)

    adjacent_matrix = torch.cat(tuple(adj_tensor_datasets), dim=0)

    logger.info("Finish Computing Adjacent Matrix".ljust(60))

    ##########################################################
    #                     Data Generation                    #
    ##########################################################

    logger.info("Start Computing Dataset Generation")

    """ Normalization (Raw) """
    logger.info("--> Normalizing Raw Data")

    tensor_dataset = raw_data_normalization(tensor_dataset)

    """ Grid """
    logger.info("--> Constructing Grid")

    grid_size = args.grid_size
    grid = grid_generation(grid_size)

    """ Mapping and Normalization """
    logger.info("--> Computing Mapping and Normalization")
    sigma = args.sigma
    batch_size = args.batch_size
    start, end = 0, args.batch_size
#     index, save_batch = 0, args.save_batch
#     save_start = 0

    total_count = tensor_dataset.size()[0]
    mapped_tensor_datasets = list()
    while end < tensor_dataset.size()[0]:
        tensor_dataset_subset = tensor_dataset[start : end] # (batch_size, num_points, 3)
        tensor_dataset_mapped_norm = map_and_norm(tensor_dataset_subset, grid, sigma) # (batch_size, num_points, grid_size^3)
        mapped_tensor_datasets.append(tensor_dataset_mapped_norm)
        
#         """ Saving Processes """
#         if len(mapped_tensor_datasets) >= save_batch:
#             save_file_name = "part{index}_{filename}".format(index=index, filename=output_file_name)
#             tensor_dataset_part = torch.cat(tuple(mapped_tensor_datasets), dim=0)
#             tensor_labels_part = tensor_labels[save_start : end]
#             adjacent_matrix_part = adjacent_matrix[save_start : end]
            
#             print(tensor_dataset_part.size())
#             print(tensor_labels_part.size())
#             print(adjacent_matrix_part.size())
            
#             dataConstructor = DatasetConstructor(tensor_dataset_part, tensor_labels_part, adjacent_matrix_part)
#             print(sys.getsizeof(object))
            
#             with gzip.open(os.path.join(output_path, save_file_name), 'wb') as file:
#                 pickle.dump(dataConstructor, file)
            
#             mapped_tensor_datasets = list()
#             save_start = end
#             index += 1
        
        progress(end, total_count)
        start += batch_size
        end += batch_size
        
    tensor_dataset_subset = tensor_dataset[start: tensor_dataset.size()[0]]
    tensor_dataset_mapped_norm = map_and_norm(tensor_dataset_subset, grid, sigma)
    mapped_tensor_datasets.append(tensor_dataset_mapped_norm)
    tensor_dataset = torch.cat(tuple(mapped_tensor_datasets), dim=0)
    
#     print(tensor_dataset_part.size())
#     print(tensor_labels_part.size())
#     print(adjacent_matrix_part.size())

#     save_file_name = "part{index}_{filename}".format(index=index, filename=output_file_name)
#     tensor_dataset_part = torch.cat(tuple(mapped_tensor_datasets), dim=0)
#     tensor_labels_part = tensor_labels[save_start : tensor_dataset.size()[0]]
#     adjacent_matrix_part = adjacent_matrix[save_start : tensor_dataset.size()[0]]
    
#     with gzip.open(os.path.join(output_path, save_file_name), 'wb') as file:
#         pickle.dump(DatasetConstructor(tensor_dataset_part, tensor_labels_part, adjacent_matrix_part), file)
    
    progress(total_count, total_count)

    logger.info("Finish Dataset Generation Processes".ljust(60))

    ##########################################################
    #                       Data Saving                      #
    ##########################################################

    logger.info("Start Saving Dataset")
    
    total_count = tensor_dataset.size()[0]
    index, save_batch = 0, args.save_batch
    start, end = 0, args.save_batch
    while end < tensor_dataset.size()[0]:
        output_file_name = "part{index}_{filename}".format(index=index, filename=output_file_name)
        tensor_dataset_part = tensor_dataset[start : end]
        tensor_labels_part = tensor_labels[start : end]
        adjacent_matrix_part = adjacent_matrix[start : end]
        with gzip.open(os.path.join(output_path, output_file_name), 'wb') as file:
            pickle.dump(DatasetConstructor(tensor_dataset_part, tensor_labels_part, adjacent_matrix_part), file)
        progress(end, total_count)
        index += 1
        start += save_batch
        end += save_batch
        
    logger.info("Finish Saving Dataset")
Exemplo n.º 6
0
def gaussian_kernel(X, Y, sigma, device=None):
    D = utils.pairwise_distance(X, Y, device)
    ### YOUR CODE HERE ###
    return np.exp(-D / (2 * sigma**2))