def t2i2t(images, captions):
    image_caption_distances = pairwise_distances(images, captions)
    topk_idx = torch.topk(image_caption_distances, 10 , 1, largest=False)[1]
    ranks = []
    for i, row in enumerate(topk_idx):
        rank = np.where(row.cpu().numpy() == i)
        ranks.append(rank)

    ranks = np.array(ranks)
    r1 = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
    r5 = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
    r10 = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)

    image_caption_distances = image_caption_distances.t()
    topk_idx = torch.topk(image_caption_distances, 10 , 1, largest=False)[1]
    ranks = []
    for i, row in enumerate(topk_idx):
        rank = np.where(row.cpu().numpy() == i)
        ranks.append(rank)

    ranks = np.array(ranks)
    r1i = 100.0 * len(np.where(ranks < 1)[0]) / len(ranks)
    r5i = 100.0 * len(np.where(ranks < 5)[0]) / len(ranks)
    r10i = 100.0 * len(np.where(ranks < 10)[0]) / len(ranks)
    # print((r1, r5, r10, r1i, r5i, r10i))
    return (r1, r5, r10, r1i, r5i, r10i)
Exemplo n.º 2
0
    def forward(self, embeddings, targets):
        cuda = embeddings.is_cuda
        if cuda:
            embeddings = embeddings.cpu()
            targets = targets.cpu()

        distance_matrix = pairwise_distances(embeddings)

        triplets = []
        for target in set(targets):
            target_mask = (targets == target)
            positive_indices = np.where(target_mask)[0]
            negative_indices = np.where(np.logical_not(target_mask))[0]
            for i in positive_indices:
                hard_positive = positive_indices[np.argmax(
                    distance_matrix[i, j] for j in positive_indices)]
                hard_negative = negative_indices[np.argmin(
                    distance_matrix[i, j] for j in negative_indices)]
                triplets.append([i, hard_positive, hard_negative])
        triplets = torch.LongTensor(np.array(triplets))

        if cuda:
            embeddings = embeddings.cuda()
            triplets = triplets.cuda()

        ap_distances = (embeddings[triplets[:, 0]] -
                        embeddings[triplets[:, 1]]).pow(2).sum(1)
        an_distances = (embeddings[triplets[:, 0]] -
                        embeddings[triplets[:, 2]]).pow(2).sum(1)
        losses = F.relu(ap_distances - an_distances + self.margin)

        return losses.mean()
Exemplo n.º 3
0
def unitary_vectors():
  # get set of random unitary vectors
  x1 = np.random.random((100, 32))
  x1 = [x / np.linalg.norm(x) for x in x1]

  # get origin vector
  x2 = np.zeros((1, 32))

  # compute pairwise distances
  x1 = np.array(x1)
  x2 = np.array(x2)
  D1 = utils.pairwise_distances(x1, x2)
  D2 = _naive_pairwise_distances(x1, x2)

  # check shape
  if D1.shape != D2.shape:
    return False

  # compare naive approach with employed
  if not _close(D1, D2):
    return False

  # check if it is non-negative
  if not _close(D1, np.abs(D1)):
    return False

  # check if distance is close to 1
  for row in D1:
    for d in row:
      if not _close(d, 1):
        return False

  return True
Exemplo n.º 4
0
def same_vectors():
  # single set of random vectors
  x1 = np.random.random((100, 32))

  # compute pairwise distances
  D1 = utils.pairwise_distances(x1, x1)
  D2 = _naive_pairwise_distances(x1, x1)

  # check shape
  if D1.shape != D2.shape:
    return False

  # compare naive approach with employed
  if not _close(D1, D2):
    return False

  # check if it is non-negative
  if not _close(D1, np.abs(D1)):
    return False

  # check if main diagonal is zero
  for d in np.diag(D1):
    if not _close(d, 0):
      return False

  # check if it is symmetrical
  for i, row in enumerate(D1):
    for j, d in enumerate(row):
      if not _close(d, D1[j, i]):
        return False

  return True
Exemplo n.º 5
0
def orthogonal_vectors():
  # get set of random vectors
  x1 = np.random.random((100, 32))
  norm_x1 = [x / np.linalg.norm(x) for x in x1]

  # get set of vectors orthogonal to x1
  x2 = np.random.random((100, 32))
  x2 = [x - np.dot(x, y) * y for x, y in zip(x2, norm_x1)]

  # compute pairwise distances
  x1 = np.array(x1)
  x2 = np.array(x2)
  D1 = utils.pairwise_distances(x1, x2)
  D2 = _naive_pairwise_distances(x1, x2)

  # check shape
  if D1.shape != D2.shape:
    return False

  # compare naive approach with employed
  if not _close(D1, D2):
    return False

  # check if it is non-negative
  if not _close(D1, np.abs(D1)):
    return False

  # check if distance is close to sum of squares of magnitudes
  for i, x in enumerate(x1):
    y = x2[i]
    dist = np.sum(x**2) + np.sum(y**2)
    if not _close(dist, D1[i, i]):
      return False

  return True
Exemplo n.º 6
0
 def query(self, index):
     current_state = data["all_predictions"][index].view(1, -1)
     all_states = data["all_predictions"]
     current_all_dist = pairwise_distances(current_state, all_states)
     similar_indices = torch.topk(current_all_dist,
                                  opt.selection_radius,
                                  1,
                                  largest=False)[1]
     similar_indices = similar_indices.data[0].cpu().numpy()
     for idx in similar_indices:
         self.add_index(idx)
     return similar_indices
Exemplo n.º 7
0
    def eval(self):
        criterion = nn.CrossEntropyLoss()
        self.model.eval()
        episodic_acc = []
        loss = []
        
        with torch.no_grad():
            for b_idx, (data, target) in enumerate(self.val_loader):
                data = data.to(self.device)
                support_input = data[:self.N_way_val * self.N_shot_val,:,:,:] 
                query_input = data[self.N_way_val * self.N_shot_val:,:,:,:]

                label_encoder = {target[i * self.N_shot_val] : i for i in range(self.N_way_val)}
                query_label = torch.cuda.LongTensor([label_encoder[class_name] for class_name in target[self.N_way_val * self.N_shot_val:]])

                support = self.model(support_input)
                queries = self.model(query_input)
                prototypes = support.reshape(self.N_way_val, self.N_shot_val, -1).mean(dim=1)

                if self.matching_fn == 'parametric':
                    distances = pairwise_distances(queries, prototypes, self.matching_fn, self.parametric)
                else:
                    distances = pairwise_distances(queries, prototypes, self.matching_fn)
                    
                loss.append(criterion(-distances, query_label).item())
                y_pred = (-distances).softmax(dim=1).max(1, keepdim=True)[1]
                episodic_acc.append(1. * y_pred.eq(query_label.view_as(y_pred)).sum().item() / len(query_label))

        loss = np.array(loss)
        episodic_acc = np.array(episodic_acc)
        loss = loss.mean()
        mean = episodic_acc.mean()
        std = episodic_acc.std()

        print('\nLoss: {:.6f}\tAccuracy: {:.2f} +- {:.2f} %\n'.format(loss,mean * 100, 1.96 * std / (600)**(1/2) * 100))

        return loss, mean, std
    def query(self, index):
        # current_vector = torch.Tensor(data["train_deleted"][0][index]).view(1, -1)
        # all_vectors = torch.Tensor(data["train_deleted"][0])
        # current_vector = all_vectors[index].view(1, -1)
        # if opt.cuda:
            # all_vectors, current_vector = all_vectors.cuda(), current_vector.cuda()

        current_state = data["all_states"][index].view(1, -1)
        all_states = data["all_states"]
        current_all_dist = pairwise_distances(current_state, all_states)
        similar_indices = torch.topk(current_all_dist, opt.selection_radius * 5, 1, largest=False)[1]
        similar_indices = similar_indices.data[0].cpu().numpy()
        for idx in similar_indices:
            self.add_index(idx)
        return similar_indices
Exemplo n.º 9
0
def random_vectors():
  # random vectors
  x1 = np.random.random((100, 32))
  x2 = np.random.random((100, 32))

  # compute pairwise distances
  D1 = utils.pairwise_distances(x1, x2)
  D2 = _naive_pairwise_distances(x1, x2)

  # check shape
  if D1.shape != D2.shape:
    return False

  # compare naive approach with employed
  if not _close(D1, D2):
    return False

  # check if it is non-negative
  if not _close(D1, np.abs(D1)):
    return False

  return True
Exemplo n.º 10
0
    def train(self):
        criterion = nn.CrossEntropyLoss()

        best_mean = 0
        iteration = 0
        self.sample_idx_val = []
        self.noise_val = []
        for i in range(self.episodes_per_epoch):
            self.sample_idx_val.append(
                torch.tensor([
                    torch.randint(self.N_shot_val * i,
                                  self.N_shot_val * (i + 1),
                                  (self.M_aug_val, )).numpy()
                    for i in range(self.N_way_val)
                ]).reshape(-1))
            self.noise_val.append(
                torch.randn((self.N_way_val * self.M_aug_val, self.nz),
                            device=self.device))

        if self.resume_iter:
            print("resuming step %d ..." % self.resume_iter)
            iteration = self.resume_iter
            self.load_checkpoint(self.resume_iter)
            loss, mean, std = self.eval()
            if mean > best_mean:
                best_mean = mean

        episodic_acc = []

        for ep in range(self.num_epochs):
            self.cnn.train()
            self.g.train()
            self.mlp.train()

            for batch_idx, (data, target) in enumerate(self.train_loader):
                data = data.to(self.device)
                self.optimizer.zero_grad()

                support_input = data[:self.N_way_train *
                                     self.N_shot_train, :, :, :]
                query_input = data[self.N_way_train *
                                   self.N_shot_train:, :, :, :]

                label_encoder = {
                    target[i * self.N_shot_train]: i
                    for i in range(self.N_way_train)
                }
                query_label = torch.cuda.LongTensor([
                    label_encoder[class_name]
                    for class_name in target[self.N_way_train *
                                             self.N_shot_train:]
                ])

                support = self.cnn(support_input)
                queries = self.cnn(query_input)

                sample_idx = torch.tensor([
                    torch.randint(self.N_shot_train * i,
                                  self.N_shot_train * (i + 1),
                                  (self.M_aug_train, )).numpy()
                    for i in range(self.N_way_train)
                ]).reshape(-1)

                sample = support[sample_idx]
                noise = torch.randn(
                    (self.N_way_train * self.M_aug_train, self.nz),
                    device=self.device)

                support_g = self.g(sample,
                                   noise).reshape(self.N_way_train,
                                                  self.M_aug_train, -1)
                support = support.reshape(self.N_way_train, self.N_shot_train,
                                          -1)

                support_aug = torch.cat([support, support_g], dim=1)
                support_aug = support_aug.reshape(
                    self.N_way_train * (self.N_shot_train + self.M_aug_train),
                    -1)

                prototypes = self.mlp(support_aug)
                prototypes = prototypes.reshape(
                    self.N_way_train, self.N_shot_train + self.M_aug_train,
                    -1).mean(dim=1)
                queries = self.mlp(queries)

                if self.matching_fn == 'parametric':
                    distances = pairwise_distances(queries, prototypes,
                                                   self.matching_fn,
                                                   self.parametric)

                else:
                    distances = pairwise_distances(queries, prototypes,
                                                   self.matching_fn)

                loss = criterion(-distances, query_label)
                loss.backward()
                self.optimizer.step()

                y_pred = (-distances).softmax(dim=1).max(1, keepdim=True)[1]
                episodic_acc.append(
                    1. * y_pred.eq(query_label.view_as(y_pred)).sum().item() /
                    len(query_label))

                if (iteration + 1) % self.log_interval == 0:
                    episodic_acc = np.array(episodic_acc)
                    mean = episodic_acc.mean()
                    std = episodic_acc.std()

                    print(
                        'Epoch: {:3d} [{:d}/{:d}]\tIteration: {:5d}\tLoss: {:.6f}\tAccuracy: {:.2f} +- {:.2f} %'
                        .format(
                            ep, (batch_idx + 1), len(self.train_loader),
                            iteration + 1, loss.item(), mean * 100,
                            1.96 * std / (self.log_interval)**(1 / 2) * 100))

                    if self.use_wandb:
                        import wandb
                        wandb.log(
                            {
                                "loss":
                                loss.item(),
                                "acc_mean":
                                mean * 100,
                                "acc_ci":
                                1.96 * std /
                                (self.log_interval)**(1 / 2) * 100,
                                'lr':
                                self.optimizer.param_groups[0]['lr']
                            },
                            step=iteration + 1)

                    episodic_acc = []

                if (iteration + 1) % self.ckp_interval == 0:
                    loss, mean, std = self.eval()
                    if mean > best_mean:
                        best_mean = mean
                        self.save_checkpoint(iteration)
                        if self.use_wandb:
                            wandb.run.summary[
                                "best_accuracy"] = best_mean * 100

                    if self.use_wandb:
                        import wandb
                        wandb.log(
                            {
                                "val_loss": loss,
                                "val_acc_mean": mean * 100,
                                "val_acc_ci": 1.96 * std / (600)**(1 / 2) * 100
                            },
                            step=iteration + 1,
                            commit=False)

                iteration += 1

            self.scheduler.step()
        self.save_checkpoint(iteration)
Exemplo n.º 11
0
    def train(self):
        task_criterion = nn.CrossEntropyLoss()
        adversarial_criterion = nn.BCELoss()

        best_mean = 0
        iteration = 0
        real_label = 1.
        fake_label = 0.

        self.sample_idx_val = []
        self.noise_val = []
        for i in range(self.episodes_per_epoch):
            self.sample_idx_val.append(
                torch.tensor([
                    torch.randint(self.N_shot_val * i,
                                  self.N_shot_val * (i + 1),
                                  (self.M_aug_val, )).numpy()
                    for i in range(self.N_way_val)
                ]).reshape(-1))
            self.noise_val.append(
                torch.randn((self.N_way_val * self.M_aug_val, self.nz),
                            device=self.device))

        if self.resume_iter:
            print("resuming step %d ..." % self.resume_iter)
            iteration = self.resume_iter
            self.load_checkpoint(self.resume_iter)
            loss, mean, std = self.eval()
            if mean > best_mean:
                best_mean = mean

        episodic_acc = []

        for ep in range(self.num_epochs):
            self.cnn.train()
            self.g.train()
            self.mlp.train()
            self.d.train()
            for batch_idx, (data, target) in enumerate(self.train_loader):
                data = data.to(self.device)

                support_input = data[:self.N_way_train *
                                     self.N_shot_train, :, :, :]
                query_input = data[self.N_way_train *
                                   self.N_shot_train:, :, :, :]

                label_encoder = {
                    target[i * self.N_shot_train]: i
                    for i in range(self.N_way_train)
                }
                query_label = torch.cuda.LongTensor([
                    label_encoder[class_name]
                    for class_name in target[self.N_way_train *
                                             self.N_shot_train:]
                ])

                real_label = torch.full((self.N_way_train * self.N_shot_val, ),
                                        1.,
                                        dtype=torch.float,
                                        device=self.device)
                real_label_g = torch.full(
                    (self.N_way_train * self.M_aug_train, ),
                    1.,
                    dtype=torch.float,
                    device=self.device)
                fake_label_g = torch.full(
                    (self.N_way_train * self.M_aug_train, ),
                    0.,
                    dtype=torch.float,
                    device=self.device)

                ################
                #   update D   #
                ################
                support = self.cnn(support_input)
                queries = self.cnn(query_input)

                sample_idx = torch.tensor([
                    torch.randint(self.N_shot_train * i,
                                  self.N_shot_train * (i + 1),
                                  (self.M_aug_train, )).numpy()
                    for i in range(self.N_way_train)
                ]).reshape(-1)
                noise = torch.randn(
                    (self.N_way_train * self.M_aug_train, self.nz),
                    device=self.device)

                sample = support[sample_idx]
                support_g = self.g(sample, noise)

                if ep >= self.active_adversarial_loss_step:
                    for _ in range(self.num_d_steps):
                        self.optimizer_d.zero_grad()
                        self.optimizer.zero_grad()

                        d_loss_adv_fake = adversarial_criterion(
                            self.d(support_g.detach()).view(-1), fake_label_g)
                        d_loss_adv_real = adversarial_criterion(
                            self.d(support.detach()).view(-1), real_label)

                        d_loss = self.alpha_weight * (d_loss_adv_fake +
                                                      d_loss_adv_real)
                        d_loss.backward()
                        self.optimizer_d.step()

                else:
                    d_loss_adv_fake = torch.tensor(0).cuda()
                    d_loss_adv_real = torch.tensor(0).cuda()
                    d_loss = torch.tensor(0).cuda()
                    d_loss_task = torch.tensor(0).cuda()

                ################
                #   update H   #
                ################
                self.optimizer_d.zero_grad()
                self.optimizer.zero_grad()

                if ep >= self.active_adversarial_loss_step:
                    h_loss_adv = adversarial_criterion(
                        self.d(support_g).view(-1), real_label_g)
                else:
                    h_loss_adv = torch.tensor(0).cuda()

                support_g_r = support_g.reshape(self.N_way_train,
                                                self.M_aug_train, -1)
                support_r = support.reshape(self.N_way_train,
                                            self.N_shot_train, -1)

                support_aug = torch.cat([support_r, support_g_r], dim=1)
                support_aug = support_aug.reshape(
                    self.N_way_train * (self.N_shot_train + self.M_aug_train),
                    -1)

                prototypes = self.mlp(support_aug)
                prototypes = prototypes.reshape(
                    self.N_way_train, self.N_shot_train + self.M_aug_train,
                    -1).mean(dim=1)
                queries = self.mlp(queries)

                if self.matching_fn == 'parametric':
                    distances = pairwise_distances(queries, prototypes,
                                                   self.matching_fn,
                                                   self.parametric)

                else:
                    distances = pairwise_distances(queries, prototypes,
                                                   self.matching_fn)

                h_loss_task = task_criterion(-distances, query_label)
                h_loss = self.alpha_weight * h_loss_adv + h_loss_task
                h_loss.backward()
                self.optimizer.step()

                y_pred = (-distances).softmax(dim=1).max(1, keepdim=True)[1]
                episodic_acc.append(
                    1. * y_pred.eq(query_label.view_as(y_pred)).sum().item() /
                    len(query_label))

                if (iteration + 1) % self.log_interval == 0:
                    episodic_acc = np.array(episodic_acc)
                    mean = episodic_acc.mean()
                    std = episodic_acc.std()
                    episodic_acc = []

                    print(
                        'Epoch: {:3d} [{:d}/{:d}]  Iteration: {:5d}  h_loss: {:.4f}  h_loss_adv: {:.4f}  h_loss_task: {:.4f}  d_loss: {:.4f}  d_loss_adv_fake: {:.4f}  d_loss_adv_real: {:.4f}  Accuracy: {:.2f} +- {:.2f} %'
                        .format(
                            ep, (batch_idx + 1), len(self.train_loader),
                            iteration + 1, h_loss.item(), h_loss_adv.item(),
                            h_loss_task.item(), d_loss.item(),
                            d_loss_adv_fake.item(), d_loss_adv_real.item(),
                            mean * 100,
                            1.96 * std / (self.log_interval)**(1 / 2) * 100))

                    if self.use_wandb:
                        import wandb
                        wandb.log(
                            {
                                'h_loss':
                                h_loss.item(),
                                'h_loss_adv':
                                h_loss_adv.item(),
                                'h_loss_task':
                                h_loss_task.item(),
                                'd_loss':
                                d_loss.item(),
                                'd_loss_adv_fake':
                                d_loss_adv_fake.item(),
                                'd_loss_adv_real':
                                d_loss_adv_real.item(),
                                "acc_mean":
                                mean * 100,
                                "acc_ci":
                                1.96 * std /
                                (self.log_interval)**(1 / 2) * 100,
                                'lr':
                                self.optimizer.param_groups[0]['lr']
                            },
                            step=iteration + 1)

                if (iteration + 1) % self.ckp_interval == 0:
                    loss, mean, std = self.eval()
                    if mean > best_mean:
                        best_mean = mean
                        self.save_checkpoint(iteration)
                        if self.use_wandb:
                            wandb.run.summary[
                                "best_accuracy"] = best_mean * 100

                    if self.use_wandb:
                        import wandb
                        wandb.log(
                            {
                                "val_loss": loss,
                                "val_acc_mean": mean * 100,
                                "val_acc_ci": 1.96 * std / (600)**(1 / 2) * 100
                            },
                            step=iteration + 1,
                            commit=False)

                iteration += 1

            self.scheduler.step()
            self.scheduler_d.step()