Exemplo n.º 1
0
    def simulate_walks(self,
                       num_walks,
                       walk_length,
                       stay_prob=0.3,
                       workers=1,
                       verbose=0):

        layers_adj = pd.read_pickle(self.temp_path + 'layers_adj.pkl')
        layers_alias = pd.read_pickle(self.temp_path + 'layers_alias.pkl')
        layers_accept = pd.read_pickle(self.temp_path + 'layers_accept.pkl')
        gamma = pd.read_pickle(self.temp_path + 'gamma.pkl')
        walks = []
        initialLayer = 0

        nodes = self.idx  # list(self.g.nodes())

        results = Parallel(
            n_jobs=workers,
            verbose=verbose,
        )(delayed(self._simulate_walks)
          (nodes, num, walk_length, stay_prob, layers_adj, layers_accept,
           layers_alias, gamma) for num in partition_num(num_walks, workers))

        walks = list(itertools.chain(*results))
        return walks
Exemplo n.º 2
0
 def parallel_walks(self, num_walks, walk_length, workers=1, verbose=0):
     G = self.G
     nodes = list(G.nodes())
     results = Parallel(n_jobs=workers, verbose=verbose, )(
         delayed(self._parallel_walk)(nodes,num, walk_length) for num in
         partition_num(num_walks, workers))
     walks = list(itertools.chain(*results))
     return walks