# local import utils # convert test statistic to a p-value for a given point pVal_func = lambda TS, dec: -np.log10(0.5 * (chi2(len(llh.params)).sf(TS) + chi2(len(llh.params)).cdf(-TS))) label = dict(TS=r"$\mathcal{TS}$", nsources=r"$n_S$", gamma=r"$\gamma$", ) if __name__=="__main__": plt = utils.plotting(backend="pdf") llh, mc = utils.startup(Nsrc=10) print(llh) # iterator of all-sky scan with follow up scans of most interesting points for i, (scan, hotspot) in enumerate(llh.all_sky_scan( nside=2**6, follow_up_factor=1, pVal=pVal_func, decRange=np.radians([-90., 90.]))): if i > 0: # break after first follow up break
logging.getLogger("skylab.psLLH.PointSourceLLH").setLevel(logging.INFO) # convert test statistic to a p-value for a given point pVal_func = lambda TS, dec: -np.log10(0.5 * (chi2(len(llh.params)).sf(TS) + chi2(len(llh.params)).cdf(-TS))) label = dict(TS=r"$\mathcal{TS}$", nsources=r"$n_S$", gamma=r"$\gamma$", ) if __name__=="__main__": plt = utils.plotting(backend="pdf") llh, mc = utils.startup(Nsrc=10) print(llh) # iterator of all-sky scan with follow up scans of most interesting points for i, (scan, hotspot) in enumerate(llh.all_sky_scan( nside=2**6, follow_up_factor=1, pVal=pVal_func, hemispheres=dict(Full=np.radians([-90., 90.])))): if i > 0: # break after first follow up break
from scipy.interpolate import interp1d from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.metrics import mean_squared_error, r2_score from sklearn.metrics import accuracy_score samplerate, samples = wavfile.read('canciones/hakuna_matata.wav') samples = samples[5000000:5000100] newsamples = samples.copy() damage.noiseadd(newsamples, 0.7, 0.3) matches = recognize.cheat(samples, newsamples, false_positives=0.04, false_negatives=0.1) matchesSD = recognize.cheat(samples, samples, false_positives=0.04, false_negatives=0.1) x, y = utils.tovalidxy(newsamples, matches) xSD, ySD = utils.tovalidxy(samples, matchesSD) x = np.array(x).reshape((-1, 1)) y = np.array(y) xSD = np.array(xSD).reshape((-1, 1)) ySD = np.array(ySD) xP, yP, xSD, ySD = utils.partir(x, y, xSD, ySD, 10) polynomial_features = PolynomialFeatures(degree=10) y_poly_pred = utils.polinomialR(xP, yP, ySD, polynomial_features) utils.plotting(xP, yP, samples, y_poly_pred)
def map_states(a): set_a = np.array(list(set(a))) for ii in range(len(set_a)): a = np.where(a==set_a[ii],ii+1,a) return a if __name__ == '__main__': for target in targets: out_dir = os.path.join(ouput_prefix, target) if not os.path.exists(out_dir): os.makedirs(out_dir) out_edf_data = load_edf_data(input_prefix, target) counter_data = 1 Theta = None U = None for data_all, file_name, seizure_start_time_offsets, seizure_lengths in out_edf_data: # plot_eeg(data_all, seizure_start_time_offsets, seizure_lengths) counter_data, weight_matrices_features, weight_matrices,intervals_seizures, Theta, U = \ W_generator(data_all, file_name, seizure_start_time_offsets, seizure_lengths, target, out_dir, out_edf_data, counter_data, flag_normalized, Theta_in=Theta, U_in=U) estimated_states = None for appr in range(num_approaches): # estimated_states = state_estimation(weight_matrices_features[appr,:,:], file_name, state_estimation_mode) # estimated_states = map_states(estimated_states) plotting(out_dir + '/' + name_weight_matrices[appr], file_name, weight_matrices[appr], intervals_seizures = intervals_seizures, estimated_states = estimated_states)
def main_(): N = 15 #Sector Basic Materials syms = BM sect = sector(syms) syms = random.sample(syms, N) plotting((pre_main_(syms)), sect) #''' #Sector Communication Services syms = CS sect = sector(syms) syms = random.sample(syms, N) plotting((pre_main_(syms)), sect) #Sector Consumer Defensive syms = CD sect = sector(syms) syms = random.sample(syms, N) plotting((pre_main_(syms)), sect) #Sector Energy syms = Eneg sect = sector(syms) syms = random.sample(syms, N) plotting((pre_main_(syms)), sect) #Sector Real Estate syms = RE sect = sector(syms) plotting((pre_main_(syms)), sect) #Sector Industrials syms = Ind sect = sector(syms) syms = random.sample(syms, N) plotting((pre_main_(syms)), sect) ###################### #Sector Consumer Cyclical syms = CC sect = sector(syms) syms = random.sample(syms, N) plotting((pre_main_(syms)), sect) #Sector Financial Services syms = FS sect = sector(syms) syms = random.sample(syms, N) plotting((pre_main_(syms)), sect) #Sector Health Care syms = HC sect = sector(syms) syms = random.sample(syms, N) plotting((pre_main_(syms)), sect) #Sector Technology syms = Techn sect = sector(syms) syms = random.sample(syms, N) plotting((pre_main_(syms)), sect)
df_ts = utils.rm_early_zeros(df_ts) #if max_display_length > 0: # df_ts = df_ts[-max_display_length:] results, model = utils.process_geounit(df_ts, window_length, exp_or_lin) print() utils.print_results(selection, results.iloc[0, 0:8], normalise_by, pop_csv, results.iloc[0,8], results.iloc[0,9], case, lang) if save_not_show in [0, 1]: country = selection + ' ' if case=='confirmed': country += 'Fallzahl' else: country += 'Todesfälle' utils.plotting(df_ts, model, save_not_show, country, results.iloc[0,8], results.iloc[0,9], lang, panels) else: # analysis of all counties and complete BW for case in cases_list: if max_display_length > 0: figures[case] = figures[case].iloc[-max_display_length:,:] results_list = list() #for selection in allowed_values[:3]: for selection in allowed_values[:-1]: print(selection) df_ts = figures[case][selection] df_ts = utils.rm_early_zeros(df_ts) results, model = utils.process_geounit(df_ts, window_length, exp_or_lin) results = results.assign(selection=selection)
if __name__ == '__main__': pop_csv = 'world' df = utils.open_csvs() # filename is used to create name of image file if saving plot results_list = list() for country in countries: print(country) df_ts = utils.data_preparation(df, country, cases) if max_display_length > 0: df_ts = df_ts[-max_display_length:] results, model = utils.process_geounit(df_ts, window_length, exp_or_lin) results = results.assign(country=country) results = results.set_index('country') results_list.append(results) if save_plots == 1: utils.plotting(df_ts, model, 1, country, results.iloc[0,8], results.iloc[0,9], lang, panels) utils.print_header(normalise_by, pop_csv) df_results = pd.concat(results_list) df_results = df_results.sort_values(3, ascending=False) for country in df_results.index: if window_length > 0: utils.print_results(country, df_results.loc[country,:].iloc[0:8], normalise_by, pop_csv, window_length, df_results.loc[country,:].iloc[9], cases, lang) else: utils.print_results(country, df_results.loc[country,:].iloc[0:8], normalise_by, pop_csv, df_results.loc[country,:].iloc[8], df_results.loc[country,:].iloc[9], cases, lang)