Exemplo n.º 1
0
def enhance_roi(data_id):
    data_class = 'allClass'
    data_type = 'cropped_roi'

    # file paths
    data_path = f'networks/data/sgp/{data_id}/{data_type}/*'
    model_path = 'networks/model'
    img_save_path = 'networks/reconstructed_roi/conv1d'
    # mkdir if not exists
    Path(f'{img_save_path}').mkdir(parents=True, exist_ok=True)

    channel_len = 23

    # load test data
    print('Load test data..')
    test_dataset, sample_img = load_images_data(data_path, rescale_ratio=0.25)
    img_height, img_width = sample_img.shape

    # load model
    print('Load model..')
    model = models.conv1d_net(channel_len, 3)
    model.load_state_dict(
        torch.load(f'{model_path}/conv1d_on_{data_class}.pth',
                   map_location='cpu'))
    model.eval()

    print('Model predict..')
    predictions = models.predict_class(test_dataset, model)

    print('Reconstruct..')
    sample_img = reconstruct_image(sample_img,
                                   predictions,
                                   enhance_intensity=20)
    imsave(f'{img_save_path}/{data_id}_conv1d.png', sample_img)
Exemplo n.º 2
0
def enhance_roi(data_id):
    data_class = 'allClass'
    data_type = 'cropped_roi'

    # file paths
    data_path = f'networks/data/sgp/{data_id}/cropped_roi/*'
    model_path = 'networks/model'
    img_save_path = 'networks/reconstructed_roi/conv_resid'
    # mkdir if not exists
    Path(f'{img_save_path}').mkdir(parents=True, exist_ok=True)

    # load test data
    print('Load test data..')
    test_imgs = load_raw_images_data(data_path,
                                     rescale_ratio=0.25,
                                     preserve_range_after_rescale=True)
    sample_img = test_imgs[0]
    test_dataset, channel_len = load_patch_dataset_from_imgs(test_imgs,
                                                             patch_size=3)

    # load model
    print('Load model..')
    model = models.conv_resid(channel_len, 3)
    model.load_state_dict(
        torch.load(f'{model_path}/conv_resid_on_{data_class}.pth',
                   map_location='cpu'))
    model.eval()

    print('Model predict..')
    predictions = models.predict_class(test_dataset, model)

    predictions = pad_prediction(predictions, sample_img,
                                 test_dataset.patch_size)

    print('Reconstruct..')
    sample_img = reconstruct_image(sample_img,
                                   predictions,
                                   enhance_intensity=20,
                                   count_note=True)
    imsave(f'{img_save_path}/{data_id}_conv_resid.png', sample_img)
Exemplo n.º 3
0
elif net_style == 1:
    model_name = f'fconv{conv_nd}d_on_{data_class}_{data_id}.pth'
elif net_style == 0:
    model_name = f'conv{conv_nd}d_on_{data_class}_{data_id}.pth'
torch.save(conv_model.state_dict(), f'{model_path}/{model_name}')

# save log df
log_df.to_pickle(f'{log_path}/{model_name}_loss_acc_log.pkl')

print('Reconstruct..')
with torch.no_grad():
    output = conv_model(torch.FloatTensor(imgs_norm))
    _, conv_pred = torch.max(output.data, 1)

    print('-max in conv_pred: ', torch.max(conv_pred.data).item())
    print('-min in conv_pred: ', torch.min(conv_pred.data).item())

imsave(f'{img_save_path}/{data_id}_orig.png', sample_img)

sample_img_conv = reconstruct_image(sample_img, conv_pred, count_note=True)
if net_style == 2:
    img_name = f'{img_save_path}/conv{conv_nd}d_hyb/{data_id}_conv{conv_nd}d_hyb.png'
elif net_style == 1:
    img_name = f'{img_save_path}/fconv{conv_nd}d/{data_id}_fconv{conv_nd}d.png'
elif net_style == 0:
    img_name = f'{img_save_path}/conv{conv_nd}d/{data_id}_conv{conv_nd}d.png'
imsave(img_name, sample_img_conv)

# plot learning curve
plot_loss_acc_one_model(log_df)
Exemplo n.º 4
0
channel_train, y_true, channel_len = load_raw_labeled_data()

# fit lda
print('Model training..')
classifier = lda()
classifier.fit(channel_train, y_true)
precision_clf = classifier.score(channel_train, y_true)
prediction = classifier.predict(channel_train)
balanced_acc = balanced_accuracy_score(y_true, prediction)
kappa = cohen_kappa_score(y_true, prediction)
# plot learning curve
plot_learning_curve(classifier, 'learning curve of LDA', channel_train, y_true)

print('train-accuracy: ', precision_clf)
print('balanced-accuracy: ', balanced_acc)
print('kappa: ', kappa)

# prepare test data
print('Prepare test data..')
imgs = load_raw_images_data(test_data_path,
                            rescale_ratio=0.25,
                            preserve_range_after_rescale=True)
channel_test, _ = flatten_images(imgs)

print('Model predict..')
predictions = classifier.predict(channel_test)

print('Reconstruct..')
sample_img = imgs[0]
sample_img = reconstruct_image(sample_img, predictions)
imsave(f'{img_save_path}/{data_id}_lda.png', sample_img)
Exemplo n.º 5
0
sample_img = test_imgs[0]
test_dataset, channel_len = load_patch_dataset_from_imgs(test_imgs,
                                                         patch_size=3)

# load model
print('Load model..')
model = models.conv_hybrid(channel_len, 3)
if is_consider_residual:
    model.load_state_dict(
        torch.load(f'{model_path}/conv_hybrid_on_{data_class}.pth',
                   map_location='cpu'))
else:
    model.load_state_dict(
        torch.load(f'{model_path}/conv_hybrid_no_res_on_{data_class}.pth',
                   map_location='cpu'))
model.eval()

print('Model predict..')
predictions = models.predict_class(test_dataset, model)

predictions = pad_prediction(predictions, sample_img, test_dataset.patch_size)

print('Reconstruct..')
sample_img = reconstruct_image(sample_img,
                               predictions,
                               enhance_intensity=20,
                               count_note=True)
if is_consider_residual:
    imsave(f'{img_save_path}/{data_id}_conv_hybrid.png', sample_img)
else:
    imsave(f'{img_save_path}/{data_id}_conv_hybrid_no_res.png', sample_img)
Exemplo n.º 6
0
def main():
    print('* Start! ')
    print('* Loading config.json')
    with open('config.json') as json_data:
        config = json.load(json_data)
        depth = int(config["layers"])
        width = int(config["neurons_by_layer"])
        drop_in = float(config["dropout_input"])
        drop_hid = float(config["dropout_hidden"])
        num_epochs = int(config["num_epochs"])    
        winSide = int(config["window_side"])    
        ImageShape = config["image_shape"]
        ImageShape = (int(ImageShape[0]),int(ImageShape[1]),int(ImageShape[2]))
        ValidationSet = utils.getValues(config["validation_set"])
        alpha = float(config["alpha"])
    # Other global variables
    PatternShape   	= (ImageShape[0],ImageShape[1])
    winSize        	    = (winSide,winSide)
    n_features     	    = ImageShape[2]*(winSide**2)
    print("* Building model and compiling functions...")
    input_var = T.matrix('inputs')
    target_var = T.ivector('targets')
    network = utils.build_custom_mlp(n_features, input_var, depth, width, drop_in, drop_hid)
    prediction = lasagne.layers.get_output(network)
    t2 = theano.tensor.extra_ops.to_one_hot(target_var, 2, dtype='int32')
    error = lasagne.objectives.categorical_crossentropy(prediction, t2)
    params = lasagne.layers.get_all_params(network, trainable=True)
    output_model = theano.function([input_var], prediction)
    # compilation
    comp_params_updater = []
    for w in params:
        w_in = T.matrix()
        if(w_in.type != w.type):
            w_in = T.vector()
        w_update = theano.function([w_in], updates=[(w, w_in)])
        comp_params_updater = comp_params_updater + [w_update]
    
    '''
    Method that receives the new set of weights 
    and inserts them in the net. 
    '''
    def params_updater(all_w):
        idx_init = 0
        params_idx = 0
        for w_updater in comp_params_updater:
            w = params[params_idx]
            params_idx += 1
            w_value_pre = w.get_value()
            w_act = all_w[idx_init:idx_init+w_value_pre.size]
            w_value = w_act.reshape(w_value_pre.shape)
            idx_init += w_value_pre.size
            w_updater(w_value)
        return
    
    w_t = numpy.load('../data/w_t.npy')
    params_updater(w_t)
    print('* Show test images... ')
    test_n = ValidationSet
    test_idx    = numpy.arange(test_n.size)
    accuracy = numpy.zeros(test_n.size,)
    for idx in test_idx:
        print('* Test image: {}'.format(idx))
        x_image,  t_image,  mask_image = utils.get_images(ImageShape, PatternShape, winSize, test_n[idx])
        print('* get_mean. ')
        x_mean = utils.get_mean(x_image,  winSize,  ImageShape[2],  ImageShape)
        print('* get_std. ')
        x_std = utils.get_std(x_image,  winSize,  ImageShape[2],  ImageShape,  x_mean)
        print('* get_predictions. ')
        y_preds = utils.get_predictions(x_image, ImageShape, PatternShape, winSize, output_model,  x_mean, x_std)
        output_image = utils.reconstruct_image(y_preds,w=winSize, PatternShape=PatternShape, alpha=alpha)
        t_image = t_image.astype(numpy.float_)/255
        mask_image = mask_image.astype(numpy.float_)/255
        error_image,  accuracy[idx] = utils.get_error_image(output_image, t_image, mask_image)
        print('Accuracy[{}]: {}'.format(test_n[idx], accuracy[idx]))
        error_image = numpy.floor(error_image*255)
        cv2.imwrite('debug/error_image-'+str(test_n[idx])+'.png',error_image)
        # Output of model
        output_image = numpy.floor(output_image*255)
        cv2.imwrite('debug/y_preds-'+str(test_n[idx])+'.png',output_image)
Exemplo n.º 7
0
 def optimizer(func, x0, fprime, training_data, callback):
     n1 = ImageShape[0]
     n2 = ImageShape[1]
     diff = (winSize[0] - 1) // 2
     valid_windows = int(n1 * n2 - diff * 2 * (n1 + n2) + 4 * diff * diff)
     print('* Optimizer method. ')
     training_set_idx = 0
     n_samples = 1000
     w_t = x0
     m_t = 0
     x_image, t_image, mask_image = utils.get_images(
         ImageShape, PatternShape, winSize, TrainingSet[training_set_idx])
     x_mean = utils.get_mean(x_image, winSize, ImageShape[2], ImageShape)
     x_std = utils.get_std(x_image, winSize, ImageShape[2], ImageShape,
                           x_mean)
     train_data = sampleData(valid_windows, n_samples, x_image, t_image,
                             winSize, ImageShape, x_mean, x_std)
     e_t = func(w_t.astype('float32'), *train_data)
     e_it = numpy.zeros(num_epochs)
     de_it = numpy.zeros(num_epochs)
     auc_it = numpy.zeros(num_epochs)
     auc_x = numpy.zeros(num_epochs)
     m_r = 0.99
     it2 = 0
     for i in numpy.arange(num_epochs):
         dedw = fprime(w_t.astype('float32'), *train_data)
         g_t = -dedw
         l_r = learning_rate
         m_t = m_r * m_t + g_t * l_r
         dw_t = m_r * m_t + g_t * l_r
         w_t = w_t + dw_t
         e_t = func(w_t.astype('float32'), *train_data)
         e_it[i] = e_t
         if (i % 50 == 0):
             train_data = sampleData(valid_windows, n_samples, x_image,
                                     t_image, winSize, ImageShape, x_mean,
                                     x_std)
             print("i: {}, e_t: {}, time: {}".format(i, e_t, time.ctime()))
         de_it[i] = numpy.abs(dw_t).mean()
         if ((i > 10) and (i % 400 == 0)):
             training_set_idx = (training_set_idx + 1) % TrainingSet.size
             x_image, t_image, mask_image = utils.get_images(
                 ImageShape, PatternShape, winSize,
                 TrainingSet[training_set_idx])
             x_mean = utils.get_mean(x_image, winSize, ImageShape[2],
                                     ImageShape)
             x_std = utils.get_std(x_image, winSize, ImageShape[2],
                                   ImageShape, x_mean)
         if ((i > 10) and (i % 800 == 0)):
             numpy.save('../data/w_t.npy', w_t)
             sio.savemat(
                 '../data/BVS_data.mat', {
                     'depth': depth,
                     'width': width,
                     'drop_in': drop_in,
                     'drop_hid': drop_hid,
                     'w_t': w_t
                 })
             y_preds = utils.get_predictions(x_image, ImageShape,
                                             PatternShape, winSize,
                                             output_model, x_mean, x_std)
             t_data = utils.sliding_window(t_image,
                                           winSize,
                                           dim=1,
                                           output=1)
             auc_it[it2] = getAUC(w_t.astype('float32'), y_preds, t_data)
             print('AUC: {}'.format(auc_it[it2]))
             auc_x[it2] = i
             it2 += 1
             # debug images
             fig, ax = plt.subplots(nrows=1, ncols=1)
             ax.plot(numpy.arange(i), e_it[0:i], 'r-')
             fig.savefig('debug/error.png')
             plt.close(fig)
             fig, ax = plt.subplots(nrows=1, ncols=1)
             ax.plot(numpy.arange(i), de_it[0:i], 'g-')
             fig.savefig('debug/dw_t.png')
             plt.close(fig)
             fig, ax = plt.subplots(nrows=1, ncols=1)
             ax.plot(auc_x[0:it2], auc_it[0:it2], 'b-')
             fig.savefig('debug/auc.png')
             plt.close(fig)
             print('Show test imge... ')
             output_image = utils.reconstruct_image(
                 y_preds, w=winSize, PatternShape=PatternShape, alpha=alpha)
             img = numpy.floor(output_image * 255)
             cv2.imwrite(
                 'debug/image-last-{}.png'.format(
                     TrainingSet[training_set_idx]), img)
Exemplo n.º 8
0
def enhanced_roi(data_id):
    data_class = 'allClass'
    folio_ids = ['024r_029v', '102v_107r', '214v_221r']
    model_data_id = folio_ids[0]
    data_type = 'cropped_roi'
    conv_nd = 2
    # net_style {'normal': 0, 'fconv': 1, 'hybrid': 2}
    net_style = 2

    # file paths
    data_path = f'networks/data/sgp/{data_id}/cropped_roi/*'
    model_path = 'networks/model'
    img_save_path = 'networks/reconstructed_roi'
    # mkdir if not exists
    Path(f'{img_save_path}').mkdir(parents=True, exist_ok=True)

    # load images
    print('-load images..')

    imgs_norm = load_raw_images_data(data_path, rescale_ratio=0.25)
    sample_img = get_sample_image(data_path, rescale_ratio=0.25)
    img_height, img_width = sample_img.shape

    channel_len = 23

    # conv model
    if net_style == 2:
        if conv_nd == 2:
            conv_model = models.conv2d_hyb_net(channel_len, img_width,
                                               img_height, 3)
        elif conv_nd == 3:
            conv_model = models.conv3d_hyb_net(channel_len, img_width,
                                               img_height, 3)
        model_name = f'{model_path}/conv{conv_nd}d_hyb_on_{data_class}_{model_data_id}.pth'
    elif net_style == 1:
        if conv_nd == 2:
            conv_model = models.fconv2d_net(channel_len, img_width, img_height,
                                            3)
        elif conv_nd == 3:
            conv_model = models.fconv3d_net(channel_len, img_width, img_height,
                                            3)
        model_name = f'{model_path}/fconv{conv_nd}d_on_{data_class}_{model_data_id}.pth'
    elif net_style == 0:
        if conv_nd == 2:
            conv_model = models.conv2d_net(channel_len, img_width, img_height,
                                           3)
        elif conv_nd == 3:
            conv_model = models.conv3d_net(channel_len, img_width, img_height,
                                           3)
        model_name = f'{model_path}/conv{conv_nd}d_on_{data_class}_{model_data_id}.pth'
    conv_model.load_state_dict(torch.load(model_name, map_location='cpu'))
    conv_model.eval()

    print('Reconstruct..')
    with torch.no_grad():
        output = conv_model(torch.FloatTensor(imgs_norm))
        _, conv_pred = torch.max(output.data, 1)

        print('-max in conv_pred: ', torch.max(conv_pred.data).item())
        print('-min in conv_pred: ', torch.min(conv_pred.data).item())

    imsave(f'{img_save_path}/{data_id}_orig_eval.png', sample_img)

    sample_img_conv = reconstruct_image(sample_img, conv_pred, count_note=True)
    if net_style == 2:
        img_name = f'{img_save_path}/conv{conv_nd}d_hyb/{data_id}_conv{conv_nd}d_hyb_eval_model_{model_data_id}.png'
    elif net_style == 1:
        img_name = f'{img_save_path}/fconv{conv_nd}d/{data_id}_fconv{conv_nd}d_eval_model_{model_data_id}.png'
    elif net_style == 0:
        img_name = f'{img_save_path}/conv{conv_nd}d/{data_id}_conv{conv_nd}d_eval_model_{model_data_id}.png'
    imsave(img_name, sample_img_conv)
Exemplo n.º 9
0
 def test_image_reconstruct(self, cb, image, image_blocks):
     mat = np.reshape(cb,
         (cb.shape[0], cb.shape[1] * cb.shape[2] * cb.shape[3])).T
     closest_blocks = [cb[utils.closest_codeblock_index(mat, block)] for block in image_blocks]
     constructed_im = utils.reconstruct_image(np.array(closest_blocks), image.shape)
     return constructed_im