def __init__(self,
                 root,
                 split="training",
                 img_size=(640, 1280),
                 is_transform=True,
                 augmentations=None):
        self.root = root  # root is path not tree, /home/brm512/datasets/vistas_v1.1/
        self.split = split
        self.is_transform = is_transform
        self.augmentations = augmentations
        self.n_classes = 12

        self.img_size = img_size if isinstance(img_size, tuple) else (img_size,
                                                                      img_size)
        #self.mean = np.array([80.5423, 91.3162, 81.4312])
        self.files = {}

        self.images_base = os.path.join(self.root, self.split, 'images')
        self.annotations_base = os.path.join(self.root, self.split, 'labels')

        self.files[split] = recursive_glob(rootdir=self.images_base,
                                           suffix='.jpg')
        self.number_of_images = len(self.files[split])

        #   self.class_ids, self.class_names, self.class_colors = self.parse_config()

        self.ignore_id = 250

        if not self.files[split]:
            raise Exception("No files for split=[%s] found in %s" %
                            (split, self.images_base))

        print("Found %d %s images" % (len(self.files[split]), split))
Exemplo n.º 2
0
def merge_results(output_path):
    search_strings = ['p_arrivals*', 's_arrivals*']
    output_fns = ['p_combined.txt', 's_combined.txt']

    for ss, ofn in zip(search_strings, output_fns):
        files = recursive_glob(output_path, ss)
        ofn = open('%s/%s' % (output_path, ofn), 'w+')

        data = set()
        for i, fn in enumerate(files):
            lines = open(fn, 'r').readlines()

            if (i == 0):
                ofn.write(lines[0])
            # end if

            for j in range(1, len(lines)):
                data.add(lines[j])
            # end for

            os.system('rm %s' % (fn))
        # end for

        for l in data:
            ofn.write(l)
        # end for

        ofn.close()
Exemplo n.º 3
0
def get_drive_filename_triples(image_path, lbl_path, mask_path, mode):
    imgs_full_path = recursive_glob(image_path, suffix=".tif")
    triples = []
    for img_full_path in imgs_full_path:
        lbl_full_path, mask_full_path = get_lbl_mask_path(os.path.basename(img_full_path), lbl_path, mask_path, mode)
        triples.append((img_full_path, lbl_full_path, mask_full_path))

    return triples
Exemplo n.º 4
0
    def __init__(
            self,
            root,
            split="train",
            index=1,  # class for binary classification
            is_transform=False,
            img_size=(320, 320),
            channels=1,
            augmentations=None,
            img_norm=True,
            test_mode=False,
            suffix=".png"):
        """__init__

        :param root:
        :param split:
        :param is_transform:
        :param img_size:
        :param augmentations
        """
        self.root = root
        self.split = split
        self.index = index
        self.is_transform = is_transform
        self.augmentations = augmentations
        self.img_norm = img_norm
        self.n_classes = len(label_map)
        self.n_channels = channels
        self.img_size = img_size if isinstance(img_size, tuple) else (img_size,
                                                                      img_size,
                                                                      channels)
        self.files = {}

        self.images_base = os.path.join(
            self.root,
            self.split,
            "images",
        )
        self.annotations_base = os.path.join(self.root, self.split, "labels")

        self.files[split] = recursive_glob(rootdir=self.images_base,
                                           suffix=".png")

        self.void_classes = np.arange(len(label_map))
        self.void_classes = self.void_classes[self.void_classes != self.index]
        self.valid_classes = [self.index]
        self.class_names = label_map.keys()

        self.ignore_index = 255
        self.label_colours = dict(
            zip(range(len(label_map)), list(label_map.values())))

        if not self.files[split]:
            raise Exception("No files for split=[%s] found in %s" %
                            (split, self.images_base))

        print("Found %d %s images in dataset %s" %
              (len(self.files[split]), split, root.split('/')[-1]))
    def _analyze_data(self):
        json_files = recursive_glob(os.path.join(self.root, 'gtFine',
                                                 self.split),
                                    suffix='json')

        category = parse_cityscapes(json_files)
        self.category = list(category.keys())[:-2]
        table = pretty_table(category)
        return table
Exemplo n.º 6
0
def eval(cfg):
    # Setup seeds
    torch.manual_seed(cfg.get("seed", 1337))
    torch.cuda.manual_seed(cfg.get("seed", 1337))
    np.random.seed(cfg.get("seed", 1337))
    random.seed(cfg.get("seed", 1337))

    # Setup device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # Setup evaluation data
    data_eval_images = utils.recursive_glob(
        os.path.join(cfg["data"]["path"], 'images'))
    # data_eval_labels = utils.recursive_glob(os.path.join(cfg["data"]["path"], 'labels'))

    # Setup model
    model = DRCN(cfg).to(device)
    checkpoint = torch.load(cfg["training"]["checkpoint"])
    model.load_state_dict(checkpoint["model_state"])

    # Setup Metrics and visualizer
    running_metrics_val = runningScore(cfg["data"]["n_classes"])

    # Start training
    utils.mkdirs(cfg["training"]["checkpoint"])

    s = cfg["data"]["img_rows"]
    for img_name in tqdm.tqdm(data_eval_images):
        img = np.array(Image.open(img_name))
        lbl = np.array(Image.open(img_name.replace('images', 'labels')))
        w, h, _ = img.shape
        out = np.zeros((6, w, h))
        for x in range(0, w - s, 200):
            for y in range(0, h - s, 200):
                img_input, lbl_input = threeCityLoader.transform(
                    img[x:x + s, y:y + s, :], lbl[x:x + s, y:y + s])
                model.set_input(img_input.unsqueeze(0), lbl_input.unsqueeze(0))
                model.inference()
                out[:, x:x + s,
                    y:y + s] += model.out1.cpu().detach().numpy().squeeze()
        max_x = (w - s) // 200 * 200
        max_y = (h - s) // 200 * 200
        pred = out[:, :max_x, :max_y]
        pred = pred.argmax(0).squeeze()
        gt = lbl[:max_x, :max_y]

        running_metrics_val.update(gt, pred)

        score, class_iou = running_metrics_val.get_scores()
        for k, v in score.items():
            print(k, v)

        for k, v in class_iou.items():
            print("{}: {}".format(k, v))

    running_metrics_val.reset()
Exemplo n.º 7
0
    def __init__(self, base_dir='../data'):
        self._base_dir = base_dir
        self._dir = os.path.join(base_dir, 'PKLotSegmented')

        self.X = np.array(utils.recursive_glob(self._dir, "*.jpg"))
        self.y = np.array(["Occupied" in s for s in self.X]).astype(np.float32)
        self.variant = np.array([generate_variant(s) for s in self.X])

        self._test_indices = None
        self._train_indices = None
Exemplo n.º 8
0
def main(settings):
    """."""
    files = recursive_glob(settings['source_dir'], settings['filter'])
    patterns = extract_patterns(get_lines_from_file(settings['patterns']),
                                settings['sep'])

    for filename in files:
        lines = get_lines_from_file(filename)
        for search, replace in patterns:
            lines = search_and_replace_lines(search, replace, lines)

        write_lines_to_file(filename, lines)
Exemplo n.º 9
0
    def __init__(self, base_dir='../data'):
        self._base_dir = base_dir
        self._dir = os.path.join(base_dir, 'PKLot')
        _cleanup(self._dir)

        self.X = np.array(utils.recursive_glob(self._dir, "*.jpg"))
        self.y = np.array([s[:-3] + 'xml' for s in self.X])
        shuffled_indices = np.arange(len(self.X))
        np.random.shuffle(shuffled_indices)
        self.X = self.X[shuffled_indices]
        self.y = self.y[shuffled_indices]

        self.variant = np.array([generate_variant(s) for s in self.X])
        self._test_indices = None
        self._train_indices = None
    def _set_files(self):
        assert (self.mode == 'fine' and self.split in ['train', 'val']) or \
        (self.mode == 'coarse' and self.split in ['train', 'train_extra', 'val'])

        img_list, label_list = None, None
        if self.mode == 'coarse':
            img_dir_name = 'leftImg8bit_trainextra' if self.split == 'train_extra' else 'leftImg8bit_trainvaltest'
            label_path = os.path.join(self.root, 'gtCoarse', 'gtCoarse',
                                      self.split)
        else:
            img_list = recursive_glob(os.path.join(self.root, 'leftImg8bit',
                                                   self.split),
                                      suffix='.png')
            # label_list = os.path.join(self.root, 'gtFine', self.split, img_list)
            label_list = [
                os.path.join(
                    self.root, 'gtFine', self.split,
                    label_name.split('/')[-1].split('_')[0],
                    label_name.split('/')[-1].replace('leftImg8bit',
                                                      'gtFine_labelIds'))
                for label_name in img_list
            ]

        self.files = list(zip(img_list, label_list))
    def __init__(self,
                 root_path,
                 name="train",
                 ratio=0.5,
                 transformation=False,
                 augmentation=None):
        self.root = root_path
        self.name = name
        assert transformation is not None, 'transformation must be provided, give None'
        self.transformation = transformation
        self.augmentation = augmentation
        self.n_classes = 20
        self.ratio = ratio
        self.files = {}

        assert name in (
            'label', 'unlabel', 'val', 'test'
        ), 'dataset name should be restricted in "label", "unlabel", "test" and "val", given %s' % name

        if self.name != 'test':
            self.images_base = os.path.join(self.root, "leftImg8bit")
            self.annotations_base = os.path.join(self.root, "gtFine",
                                                 'trainval')
        else:
            self.images_base = os.path.join(self.root, "leftImg8bit", 'test')
            # self.annotations_base = os.path.join(
            #     self.root, "gtFine", 'test'
            # )

        np.random.seed(1)

        if self.name != 'test':
            train_imgs = recursive_glob(rootdir=os.path.join(
                self.images_base, 'train'),
                                        suffix=".png")
            train_imgs = np.array(train_imgs)

            val_imgs = recursive_glob(rootdir=os.path.join(
                self.images_base, 'val'),
                                      suffix=".png")

            labeled_imgs = np.random.choice(train_imgs,
                                            size=int(self.ratio *
                                                     train_imgs.__len__()),
                                            replace=False)
            labeled_imgs = list(labeled_imgs)

            unlabeled_imgs = [x for x in train_imgs if x not in labeled_imgs]

            ### Now here we equalize the lengths of labelled and unlabelled imgs by just repeating up some images
            if self.ratio > 0.5:
                new_ratio = round((self.ratio / (1 - self.ratio + 1e-6)), 1)
                excess_ratio = new_ratio - 1
                new_list_1 = unlabeled_imgs * int(excess_ratio)
                new_list_2 = list(
                    np.random.choice(np.array(unlabeled_imgs),
                                     size=int(
                                         (excess_ratio - int(excess_ratio)) *
                                         unlabeled_imgs.__len__()),
                                     replace=False))
                unlabeled_imgs += (new_list_1 + new_list_2)
            elif self.ratio < 0.5:
                new_ratio = round(((1 - self.ratio) / (self.ratio + 1e-6)), 1)
                excess_ratio = new_ratio - 1
                new_list_1 = labeled_imgs * int(excess_ratio)
                new_list_2 = list(
                    np.random.choice(np.array(labeled_imgs),
                                     size=int(
                                         (excess_ratio - int(excess_ratio)) *
                                         labeled_imgs.__len__()),
                                     replace=False))
                labeled_imgs += (new_list_1 + new_list_2)

        else:
            test_imgs = recursive_glob(rootdir=self.images_base, suffix=".png")

        if (self.name == 'label'):
            self.files[name] = list(labeled_imgs)
        elif (self.name == 'unlabel'):
            self.files[name] = list(unlabeled_imgs)
        elif (self.name == 'val'):
            self.files[name] = list(val_imgs)
        elif (self.name == 'test'):
            self.files[name] = list(test_imgs)
        '''
        This pattern for the various classes has been borrowed from the official repo for Cityscapes dataset
        You can see it here: https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/helpers/labels.py
        '''
        self.void_classes = [
            0, 1, 2, 3, 4, 5, 6, 9, 10, 14, 15, 16, 18, 29, 30, -1
        ]
        self.valid_classes = [
            7, 8, 11, 12, 13, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31,
            32, 33
        ]
        self.class_names = [
            "road", "sidewalk", "building", "wall", "fence", "pole",
            "traffic_light", "traffic_sign", "vegetation", "terrain", "sky",
            "person", "rider", "car", "truck", "bus", "train", "motorcycle",
            "bicycle", "unlabelled"
        ]

        self.ignore_index = 250
        self.class_map = dict(zip(self.valid_classes, range(19)))

        if not self.files[name]:
            raise Exception("No files for name=[%s] found in %s" %
                            (name, self.images_base))

        print("Found %d %s images" % (len(self.files[name]), name))
Exemplo n.º 12
0
    def __init__(self,
                 root,
                 split="train",
                 is_transform=False,
                 img_size=(512, 1024),
                 augmentations=None,
                 train_transform=Compose([RandomHorizontallyFlip(0.5)]),
                 scale_transform=Compose([Resize([224, 224])]),
                 version="cityscapes",
                 out_dir=""):
        """__init__
        :param root:
        :param split:
        :param is_transform:
        :param img_size:
        :param augmentations 
        """
        self.root = root
        self.split = split
        self.is_transform = is_transform
        self.augmentations = augmentations
        self.train_transform = train_transform
        self.scale_transform = scale_transform

        self.n_classes = 8  #19
        self.img_size = (img_size if isinstance(img_size, tuple) else
                         (img_size, img_size))

        self.images_base = os.path.join(self.root, "leftImg8bit", self.split)
        self.annotations_base = os.path.join(self.root, "gtFine", self.split)

        img_paths = recursive_glob(rootdir=self.images_base, suffix=".png")

        self.void_classes = [
            0,
            1,
            2,
            3,
            4,
            5,
            6,
            9,
            10,
            14,
            15,
            16,
            18,
            29,
            30,
            -1,
            7,
            8,
            11,
            12,
            13,
            17,
            19,
            20,
            21,
            22,
            23,
        ]
        self.valid_classes = [
            24,
            25,
            26,
            27,
            28,
            31,
            32,
            33,
        ]
        self.class_names = [
            "person",
            "rider",
            "car",
            "truck",
            "bus",
            "train",
            "motorcycle",
            "bicycle",
        ]

        self.ignore_index = 250
        self.class_map = dict(zip(self.valid_classes, range(8)))

        self.img_paths, self.labels_coords, self.img_index_of_label, self.ins_ids = self._prepare_labels(
            img_paths, out_dir)

        if not self.img_paths:
            raise Exception("No files for split=[%s] found in %s" %
                            (split, self.images_base))

        print("Found %d %s images" % (len(self.img_paths), split))
Exemplo n.º 13
0
    def __init__(
        self,
        root,
        split="train",
        is_transform=False,
        img_size=(512, 1024),
        max_depth=250,
        augmentations=None,
        img_norm=True,
        mean=[0, 0, 0],
        test_mode=False,
    ):
        """__init__
        :param root:
        :param split:
        :param is_transform:
        :param img_size:
        :param augmentations
        """
        self.root = root
        self.split = split
        self.is_transform = is_transform
        self.augmentations = augmentations
        self.img_norm = img_norm
        self.n_classes = 19
        self.img_size = img_size
        self.max_depth = max_depth
        self.mean = np.array(mean)
        self.files = {}

        self.images_base = os.path.join(self.root, "leftImg8bit", self.split)
        self.annotations_base = os.path.join(self.root, "gtFine", self.split)
        self.disparity_base = os.path.join(self.root, "disparity", self.split)

        self.files[split] = recursive_glob(rootdir=self.images_base, suffix=".png")

        self.void_classes = [0, 1, 2, 3, 4, 5, 6, 9, 10, 14, 15, 16, 18, 29, 30, -1]
        self.valid_classes = [7, 8, 11, 12, 13, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33]

        self.class_names = [
            "unlabelled",
            "road",
            "sidewalk",
            "building",
            "wall",
            "fence",
            "pole",
            "traffic_light",
            "traffic_sign",
            "vegetation",
            "terrain",
            "sky",
            "person",
            "rider",
            "car",
            "truck",
            "bus",
            "train",
            "motorcycle",
            "bicycle",
        ]

        self.ignore_index = 250
        self.class_map = dict(zip(self.valid_classes, range(19)))

        if not self.files[split]:
            raise Exception("No files for split=[%s] found in %s" % (split, self.images_base))

        print("Found %d %s images" % (len(self.files[split]), split))