Exemplo n.º 1
0
def add_shapes(model, obs, proc, uncs, filename, hname, hname_with_systematics, include_uncertainties):
    if filename not in add_shapes_rootfiles:
        add_shapes_rootfiles[filename] = rootfile(filename)
    rf = add_shapes_rootfiles[filename]
    theta_obs = transform_name_to_theta(obs)
    theta_proc = transform_name_to_theta(proc)
    hname = hname.replace('$CHANNEL', obs)
    hname_with_systematics = hname_with_systematics.replace('$CHANNEL', obs)
    if proc == 'DATA':
        hname_tmp = hname.replace('$PROCESS', 'DATA')
        histo = rf.get_histogram(hname_tmp, include_uncertainties = False)
        if histo is None:
            hname_tmp = hname.replace('$PROCESS', 'data_obs')
            histo = rf.get_histogram(hname_tmp, include_uncertainties = False)
        if histo is None: raise RuntimeError, "did not find data histogram in rootfile"
        model.set_data_histogram(theta_obs, histo, reset_binning = True)
        return
    hf = model.get_histogram_function(theta_obs, theta_proc)
    assert hf is not None, "model has no process '%s' in channel '%s'" % (theta_proc, theta_obs)
    assert len(hf.get_parameters())==0, "model has non-trivial shape uncertainty already"
    old_nominal_histogram = hf.get_nominal_histo()
    assert len(old_nominal_histogram[2])==1, "expected a counting-only histogram with only one bin"
    hname = hname.replace('$PROCESS', proc)
    hname_with_systematics = hname_with_systematics.replace('$PROCESS', proc)
    nominal_histogram = rf.get_histogram(hname, include_uncertainties = include_uncertainties)
    if utils.reldiff(sum(old_nominal_histogram[2]), sum(nominal_histogram[2])) > 0.01 and abs(sum(old_nominal_histogram[2]) - sum(nominal_histogram[2])) > 1e-4:
        raise RuntimeError, "add_shapes: histogram normalisation given in datacard and from root file differ by more than >1% (and absolute difference is > 1e-4)"
    hf.set_nominal_histo(nominal_histogram, reset_binning = True)
    model.reset_binning(theta_obs, nominal_histogram[0], nominal_histogram[1], len(nominal_histogram[2]))
    if len(uncs) == 0: return
    for u in uncs:
        theta_unc = transform_name_to_theta(u)
        if '$DIRECTION_' in hname_with_systematics:
            hname_plus = hname_with_systematics.replace('$SYSTEMATIC', u)
            hname_minus = hname_plus
            hname_plus = hname_plus.replace('$DIRECTION_plusminus', 'plus')
            hname_minus = hname_plus.replace('$DIRECTION_plusminus', 'minus')
            hname_plus = hname_plus.replace('$DIRECTION_updown', 'up')
            hname_minus = hname_plus.replace('$DIRECTION_updown', 'down')
        else:
            hname_plus = hname_with_systematics.replace('$SYSTEMATIC', u + 'Up')
            hname_minus = hname_with_systematics.replace('$SYSTEMATIC', u + 'Down')
        histo_plus = rf.get_histogram(hname_plus, include_uncertainties = include_uncertainties, fail_with_exception = True)
        histo_minus = rf.get_histogram(hname_minus, include_uncertainties = include_uncertainties, fail_with_exception = True)
        # make the rate uncertainty part of the coefficient function, i.e., normalize plus and minus histograms
        # to nominal and add a lognormal uncertainty to the coefficient function:
        lambda_plus = math.log(sum(histo_plus[2]) / sum(nominal_histogram[2])) * uncs[u]
        lambda_minus = -math.log(sum(histo_minus[2]) / sum(nominal_histogram[2])) * uncs[u]
        model.get_coeff(theta_obs, theta_proc).add_factor('exp', parameter = u, lambda_plus = lambda_plus, lambda_minus = lambda_minus)
        f_plus = sum(nominal_histogram[2]) / sum(histo_plus[2])
        utils.mul_list(histo_plus[2], f_plus)
        f_minus = sum(nominal_histogram[2]) / sum(histo_minus[2])
        utils.mul_list(histo_minus[2], f_minus)
        hf.set_syst_histos(u, histo_plus, histo_minus, uncs[u])
        hf.normalize_to_nominal = True
Exemplo n.º 2
0
def add_shapes(model, obs, proc, uncs, filename, hname, hname_with_systematics, include_uncertainties, searchpaths = ['.'], variables = {}):
    if filename not in add_shapes_rootfiles:
        path = None
        for s in searchpaths:
            if os.path.isfile(os.path.join(s, filename)):
                path = s
                break
        if path is None: raise RuntimeError, "did not find file '%s' in the paths %s" % (filename, str(searchpaths))
        add_shapes_rootfiles[filename] = rootfile(os.path.join(path, filename))
    rf = add_shapes_rootfiles[filename]
    theta_obs = transform_name_to_theta(obs)
    theta_proc = transform_name_to_theta(proc)
    hname = hname.replace('$CHANNEL', obs)
    hname_with_systematics = hname_with_systematics.replace('$CHANNEL', obs)
    for varname, value in variables.iteritems():
        hname = hname.replace('$%s' % varname, value)
        hname_with_systematics = hname_with_systematics.replace('$%s' % varname, value)
    if proc == 'DATA':
        hname_tmp = hname.replace('$PROCESS', 'DATA')
        histo = rf.get_histogram(hname_tmp, include_uncertainties = False)
        if histo is None:
            hname_tmp = hname.replace('$PROCESS', 'data_obs')
            histo = rf.get_histogram(hname_tmp, include_uncertainties = False)
        if histo is None:
            if _verbose: print "note: did not find data histogram in %s" % rf.get_filename()
            raise RuntimeError, "did not find histo"
        model.set_data_histogram(theta_obs, histo, reset_binning = True)
        return
    hf = model.get_histogram_function(theta_obs, theta_proc)
    assert hf is not None, "model has no process '%s' in channel '%s'" % (theta_proc, theta_obs)
    assert len(hf.get_parameters())==0, "model has non-trivial shape uncertainty already"
    old_nominal_histogram = hf.get_nominal_histo()
    assert len(old_nominal_histogram[2])==1, "expected a counting-only histogram with only one bin"
    hname = hname.replace('$PROCESS', proc)
    hname_with_systematics = hname_with_systematics.replace('$PROCESS', proc)
    nominal_histogram = rf.get_histogram(hname, include_uncertainties = include_uncertainties)
    if nominal_histogram is None:
        if _verbose: print "note: did not find histogram %s in %s" % (hname, rf.get_filename())
        raise RuntimeError, "did not find histo"
    if utils.reldiff(old_nominal_histogram.get_value_sum(), nominal_histogram.get_value_sum()) > 0.01 and abs(old_nominal_histogram.get_value_sum() - nominal_histogram.get_value_sum()) > 1e-4:
        raise RuntimeError, "add_shapes: histogram normalisation given in datacard and from root file differ by more than >1% (and absolute difference is > 1e-4)"
    hf.set_nominal_histo(nominal_histogram, reset_binning = True)
    model.reset_binning(theta_obs, nominal_histogram[0], nominal_histogram[1], len(nominal_histogram[2]))
    if len(uncs) == 0: return
    for u in uncs:
        theta_unc = transform_name_to_theta(u)
        if '$DIRECTION_' in hname_with_systematics:
            hname_plus = hname_with_systematics.replace('$SYSTEMATIC', u)
            hname_minus = hname_plus
            hname_plus = hname_plus.replace('$DIRECTION_plusminus', 'plus')
            hname_minus = hname_plus.replace('$DIRECTION_plusminus', 'minus')
            hname_plus = hname_plus.replace('$DIRECTION_updown', 'up')
            hname_minus = hname_plus.replace('$DIRECTION_updown', 'down')
        else:
            hname_plus = hname_with_systematics.replace('$SYSTEMATIC', u + 'Up')
            hname_minus = hname_with_systematics.replace('$SYSTEMATIC', u + 'Down')
        histo_plus = rf.get_histogram(hname_plus, include_uncertainties = include_uncertainties)
        if histo_plus is None:
            if _verbose: print "note: did not find histogram %s in %s" % (hname_plus, rf.get_filename())
            raise RuntimeError, "did not find histo"
        histo_minus = rf.get_histogram(hname_minus, include_uncertainties = include_uncertainties)
        if histo_minus is None:
            if _verbose: print "note: did not find histogram %s in %s" % (hname_minus, rf.get_filename())
            raise RuntimeError, "did not find histo"
        # make the rate uncertainty part of the coefficient function, i.e., normalize plus and minus histograms
        # to nominal and add a lognormal uncertainty to the coefficient function:
        lambda_plus = math.log(histo_plus.get_value_sum() / nominal_histogram.get_value_sum()) * uncs[u]
        lambda_minus = -math.log(histo_minus.get_value_sum() / nominal_histogram.get_value_sum()) * uncs[u]
        model.get_coeff(theta_obs, theta_proc).add_factor('exp', parameter = u, lambda_plus = lambda_plus, lambda_minus = lambda_minus)
        f_plus = nominal_histogram.get_value_sum() / histo_plus.get_value_sum()
        histo_plus = histo_plus.scale(f_plus)
        f_minus = nominal_histogram.get_value_sum() / histo_minus.get_value_sum()
        histo_minus = histo_minus.scale(f_minus)
        hf.set_syst_histos(u, histo_plus, histo_minus, uncs[u])
        hf.normalize_to_nominal = True
Exemplo n.º 3
0
def add_shapes(model, obs, proc, uncs, filename, hname, hname_with_systematics, include_uncertainties, searchpaths = ['.'], variables = {}, rhandling = 'renormalize-lognormal'):
    assert rhandling in ('renormalize-lognormal', 'morph')
    if filename not in add_shapes_rootfiles:
        path = None
        for s in searchpaths:
            if os.path.isfile(os.path.join(s, filename)):
                path = s
                break
        if path is None: raise NotFoundException, "did not find file '%s' in the paths %s" % (filename, str(searchpaths))
        add_shapes_rootfiles[filename] = rootfile(os.path.join(path, filename))
    rf = add_shapes_rootfiles[filename]
    theta_obs = transform_name_to_theta(obs)
    theta_proc = transform_name_to_theta(proc)
    hname = hname.replace('$CHANNEL', obs)
    hname_with_systematics = hname_with_systematics.replace('$CHANNEL', obs)
    for varname, value in variables.iteritems():
        hname = hname.replace('$%s' % varname, value)
        hname_with_systematics = hname_with_systematics.replace('$%s' % varname, value)
    if proc == 'DATA':
        hname_tmp = hname.replace('$PROCESS', 'DATA')
        histo = rf.get_histogram(hname_tmp, include_uncertainties = False)
        if histo is None:
            hname_tmp = hname.replace('$PROCESS', 'data_obs')
            histo = rf.get_histogram(hname_tmp, include_uncertainties = False)
        if histo is None:
            if _debug: print "note: did not find data histogram in %s" % rf.get_filename()
            raise NotFoundException, "did not find histo"
        model.set_data_histogram(theta_obs, histo, reset_binning = True)
        return
    hf = model.get_histogram_function(theta_obs, theta_proc)
    assert hf is not None, "model has no process '%s' in channel '%s'" % (theta_proc, theta_obs)
    assert len(hf.get_parameters())==0, "model has non-trivial shape uncertainty already"
    old_nominal_histogram = hf.get_nominal_histo()
    assert len(old_nominal_histogram[2])==1, "expected a counting-only histogram with only one bin"
    hname = hname.replace('$PROCESS', proc)
    hname_with_systematics = hname_with_systematics.replace('$PROCESS', proc)
    nominal_histogram = rf.get_histogram(hname, include_uncertainties = include_uncertainties)
    if nominal_histogram is None:
        if _debug: print "note: did not find histogram %s in %s" % (hname, rf.get_filename())
        raise NotFoundException, "did not find histo"
    if _debug:
        print "norm(%s) = %.3f" % (hname, nominal_histogram.get_value_sum())
    # check that histogram in rootfile matches definition in datacard (allow deviations up to 1% / 1e-4 absolute):
    nominal_is_zero = False
    if old_nominal_histogram.get_value_sum() > 0.0 or nominal_histogram.get_value_sum() > 0.0:
        if old_nominal_histogram.get_value_sum() != -1.0 and utils.reldiff(old_nominal_histogram.get_value_sum(), nominal_histogram.get_value_sum()) > 0.01 and abs(old_nominal_histogram.get_value_sum() - nominal_histogram.get_value_sum()) > 1e-4:
            raise InconsistentDataException("add_shapes: histogram normalisation given in datacard and from root file differ by more than 1%% "
                         "(and absolute difference is > 1e-4) for channel %s, process %s (histogram name '%s')" % (obs, proc, hname))
    else:
        print "WARNING: channel '%s' process '%s': yield is <=0. Process will ALWAYS have 0 contribution; please delete it from the datacard." % (obs, proc)
        nominal_is_zero = True
    # even for nominal_is_zero, make sure to set the histogram to ensure that the binning is correct:
    hf.set_nominal_histo(nominal_histogram, reset_binning = True)
    model.reset_binning(theta_obs, nominal_histogram[0], nominal_histogram[1], len(nominal_histogram[2]))
    if len(uncs) == 0: return
    if nominal_is_zero: return
    for u in uncs:
        theta_unc = transform_name_to_theta(u)
        if '$DIRECTION_' in hname_with_systematics:
            hname_plus = hname_with_systematics.replace('$SYSTEMATIC', u)
            hname_minus = hname_plus
            hname_plus = hname_plus.replace('$DIRECTION_plusminus', 'plus')
            hname_minus = hname_plus.replace('$DIRECTION_plusminus', 'minus')
            hname_plus = hname_plus.replace('$DIRECTION_updown', 'up')
            hname_minus = hname_plus.replace('$DIRECTION_updown', 'down')
        else:
            hname_plus = hname_with_systematics.replace('$SYSTEMATIC', u + 'Up')
            hname_minus = hname_with_systematics.replace('$SYSTEMATIC', u + 'Down')
        histo_plus = rf.get_histogram(hname_plus, include_uncertainties = include_uncertainties)
        if histo_plus is None:
            if _debug: print "note: did not find histogram %s in %s" % (hname_plus, rf.get_filename())
            raise NotFoundException, "did not find histo"
        histo_minus = rf.get_histogram(hname_minus, include_uncertainties = include_uncertainties)
        if histo_minus is None:
            if _debug: print "note: did not find histogram %s in %s" % (hname_minus, rf.get_filename())
            raise NotFoundException, "did not find histo"
        if _debug:
            print "norm(%s) = %.3f" % (hname_plus, histo_plus.get_value_sum())
            print "norm(%s) = %.3f" % (hname_minus, histo_minus.get_value_sum())
            
        if rhandling == 'renormalize-lognormal':
            # make the rate uncertainty part of the coefficient function, i.e., normalize plus and minus histograms
            # to nominal and add a lognormal uncertainty to the coefficient function:
            lambda_plus = math.log(histo_plus.get_value_sum() / nominal_histogram.get_value_sum()) * uncs[u]
            lambda_minus = -math.log(histo_minus.get_value_sum() / nominal_histogram.get_value_sum()) * uncs[u]
            model.get_coeff(theta_obs, theta_proc).add_factor('exp', parameter = u, lambda_plus = lambda_plus, lambda_minus = lambda_minus)
            f_plus = nominal_histogram.get_value_sum() / histo_plus.get_value_sum()
            histo_plus = histo_plus.scale(f_plus)
            f_minus = nominal_histogram.get_value_sum() / histo_minus.get_value_sum()
            histo_minus = histo_minus.scale(f_minus)
            hf.set_syst_histos(u, histo_plus, histo_minus, uncs[u])
            hf.normalize_to_nominal = True
        else:
            hf.set_syst_histos(u, histo_plus, histo_minus, uncs[u])
Exemplo n.º 4
0
def add_shapes(model, obs, proc, uncs, filename, hname, hname_with_systematics,
               include_uncertainties):
    if filename not in add_shapes_rootfiles:
        add_shapes_rootfiles[filename] = rootfile(filename)
    rf = add_shapes_rootfiles[filename]
    theta_obs = transform_name_to_theta(obs)
    theta_proc = transform_name_to_theta(proc)
    hname = hname.replace('$CHANNEL', obs)
    hname_with_systematics = hname_with_systematics.replace('$CHANNEL', obs)
    if proc == 'DATA':
        hname_tmp = hname.replace('$PROCESS', 'DATA')
        histo = rf.get_histogram(hname_tmp, include_uncertainties=False)
        if histo is None:
            hname_tmp = hname.replace('$PROCESS', 'data_obs')
            histo = rf.get_histogram(hname_tmp, include_uncertainties=False)
        if histo is None:
            raise RuntimeError, "did not find data histogram in rootfile"
        model.set_data_histogram(theta_obs, histo, reset_binning=True)
        return
    hf = model.get_histogram_function(theta_obs, theta_proc)
    assert hf is not None, "model has no process '%s' in channel '%s'" % (
        theta_proc, theta_obs)
    assert len(hf.get_parameters()
               ) == 0, "model has non-trivial shape uncertainty already"
    old_nominal_histogram = hf.get_nominal_histo()
    assert len(old_nominal_histogram[2]
               ) == 1, "expected a counting-only histogram with only one bin"
    hname = hname.replace('$PROCESS', proc)
    hname_with_systematics = hname_with_systematics.replace('$PROCESS', proc)
    nominal_histogram = rf.get_histogram(
        hname, include_uncertainties=include_uncertainties)
    if utils.reldiff(sum(old_nominal_histogram[2]), sum(
            nominal_histogram[2])) > 0.01 and abs(
                sum(old_nominal_histogram[2]) -
                sum(nominal_histogram[2])) > 1e-4:
        raise RuntimeError, "add_shapes: histogram normalisation given in datacard and from root file differ by more than >1% (and absolute difference is > 1e-4)"
    hf.set_nominal_histo(nominal_histogram, reset_binning=True)
    model.reset_binning(theta_obs, nominal_histogram[0], nominal_histogram[1],
                        len(nominal_histogram[2]))
    if len(uncs) == 0: return
    for u in uncs:
        theta_unc = transform_name_to_theta(u)
        if '$DIRECTION_' in hname_with_systematics:
            hname_plus = hname_with_systematics.replace('$SYSTEMATIC', u)
            hname_minus = hname_plus
            hname_plus = hname_plus.replace('$DIRECTION_plusminus', 'plus')
            hname_minus = hname_plus.replace('$DIRECTION_plusminus', 'minus')
            hname_plus = hname_plus.replace('$DIRECTION_updown', 'up')
            hname_minus = hname_plus.replace('$DIRECTION_updown', 'down')
        else:
            hname_plus = hname_with_systematics.replace(
                '$SYSTEMATIC', u + 'Up')
            hname_minus = hname_with_systematics.replace(
                '$SYSTEMATIC', u + 'Down')
        histo_plus = rf.get_histogram(
            hname_plus,
            include_uncertainties=include_uncertainties,
            fail_with_exception=True)
        histo_minus = rf.get_histogram(
            hname_minus,
            include_uncertainties=include_uncertainties,
            fail_with_exception=True)
        # make the rate uncertainty part of the coefficient function, i.e., normalize plus and minus histograms
        # to nominal and add a lognormal uncertainty to the coefficient function:
        lambda_plus = math.log(
            sum(histo_plus[2]) / sum(nominal_histogram[2])) * uncs[u]
        lambda_minus = -math.log(
            sum(histo_minus[2]) / sum(nominal_histogram[2])) * uncs[u]
        model.get_coeff(theta_obs,
                        theta_proc).add_factor('exp',
                                               parameter=u,
                                               lambda_plus=lambda_plus,
                                               lambda_minus=lambda_minus)
        f_plus = sum(nominal_histogram[2]) / sum(histo_plus[2])
        utils.mul_list(histo_plus[2], f_plus)
        f_minus = sum(nominal_histogram[2]) / sum(histo_minus[2])
        utils.mul_list(histo_minus[2], f_minus)
        hf.set_syst_histos(u, histo_plus, histo_minus, uncs[u])
        hf.normalize_to_nominal = True