print('alpha = ' + str(alpha))


eta_1 = 1 / p.L
eta_2 = 2 / (p.L + p.sigma)

n_inner_iters = int(m * 0.05)
n_svrg_iters = n_iters *  30
n_dgd_iters = n_iters * 30
batch_size = 5


distributed = [
    DGD_tracking(p, n_iters=n_dgd_iters, eta=eta_1/10, x_0=x_0, W=W),
    EXTRA(p, n_iters=n_dgd_iters, eta=eta_1/2, x_0=x_0, W=W),
    ADMM(p, n_iters=n_iters, rho=1, x_0=x_0.mean(axis=1)),
    DANE(p, n_iters=n_iters, mu=mu, x_0=x_0.mean(axis=1)),
    ]

network = [
    NetworkSVRG(p, n_iters=n_svrg_iters, n_inner_iters=n_inner_iters, eta=eta_1/10, x_0=x_0, W=W, opt=1),
    NetworkSARAH(p, n_iters=n_svrg_iters, n_inner_iters=n_inner_iters, eta=eta_1/10, x_0=x_0, W=W, opt=1),
    NetworkDANE(p, n_iters=n_iters, mu=mu, x_0=x_0, W=W),
    ]

exps = distributed + network

res = run_exp(exps, kappa=kappa, max_iter=n_iters, name='linear_regression', n_process=4, save=True)

plt.show()
n_iters = 1000

p = LinearRegression(n_agent, m, dim, noise_variance=1, kappa=kappa, prob=0.3)
W, alpha = generate_mixing_matrix(p)
x_0 = np.random.rand(dim, n_agent)
eta = 2 / (p.L + p.sigma)

inner_iters = [1, 2, 5, 10, 50, 100]
batch_size = [1]
params = [(k, 1, 0.05) for k in inner_iters]


exps = [NetworkDANE(p, n_iters=n_iters, mu=mu, x_0=x_0, W=W)] \
    + [NetworkSVRG(p, n_iters=n_iters, n_inner_iters=x[0], batch_size=x[1], eta=eta*x[2], x_0=x_0, W=W) for x in params]

res = run_exp(exps, save=False, plot=False)

table = np.zeros((len(inner_iters), len(batch_size) * 2 + 1))
table[:, 0] = inner_iters
table[:, 0] /= m

inner_iters_dict = {inner_iters[i]: i for i in range(len(inner_iters))}
batch_size_dict = {batch_size[i]: i for i in range(len(batch_size))}

for x in res[1:]:
    y = x.get_results()
    if len(y['func_error']) < n_iters and y['func_error'][-1] < 1:  # Converged
        table[inner_iters_dict[x.n_inner_iters],
              batch_size_dict[x.batch_size] * 2 + 1] = len(y['func_error']) - 1
        table[inner_iters_dict[x.n_inner_iters],
              batch_size_dict[x.batch_size] * 2 + 2] = y['n_grad'][-1]
                    W=W,
                    verbose=True),
        NetworkSARAH(p,
                     n_iters=n_gd_iters,
                     n_inner_iters=n_inner_iters,
                     eta=0.1,
                     x_0=x_0,
                     W=W,
                     verbose=True),
    ]

    exps = distributed + network
    begin = time.time()
    res_list = run_exp(exps,
                       max_iter=n_iters,
                       name='nn',
                       n_process=1,
                       plot=False,
                       save=True)
    end = time.time()
    print('Total {:.2f}s'.format(end - begin))

    print("Initial accuracy = " + str(p.accuracy(x_0.mean(axis=1))))

    max_iter = max(n_iters, n_gd_iters, n_dsgd_iters) + 1
    table = np.zeros((max_iter, len(exps) * 3))

    for k in range(len(res_list)):
        res = res_list[k].get_results()
        for i in range(len(res['history'])):
            x = res['history'][i]['x']
            if len(x.shape) == 2:
Exemplo n.º 4
0
    (50, 0.05),
    (100, 0.05),
    (300, 0.02),
    (500, 0.01),
    (700, 0.01),
    (900, 0.01),
]

inner_iters = [x[0] for x in params]

exps = [
    NetworkSVRG(p, n_iters, n_inner_iters=x[0], eta=eta * x[1], x_0=x_0, W=W)
    for x in reversed(params)
]

res = run_exp(exps, kappa=kappa, max_iter=n_iters, name='linear_regression')

table = np.zeros(len(inner_iters))
inner_iters_dict = {inner_iters[i]: i for i in range(len(inner_iters))}

for x in res:
    y = x.get_results()
    if len(y['func_error']) < n_iters and y['func_error'][-1] < 1:  # Converged
        table[inner_iters_dict[x.n_inner_iters]] = len(y['func_error']) - 1
    else:  # Didn't converge
        table[inner_iters_dict[x.n_inner_iters]] = None

plt.figure()
plt.semilogy([x / m for x in inner_iters], table)
plt.xlabel('K/m')
plt.ylabel('#iters till converge')
Exemplo n.º 5
0
eta_2 = 2 / (p.L + p.sigma)

n_inner_iters = int(m * 0.05)

n_mix = list(range(1, 20)) + [20, 25, 30, 35, 50]

exps_dane = [
    NetworkDANE(p, n_iters=n_iters, n_mix=n, mu=mu, x_0=x_0, W=W)
    for n in n_mix
]

exps_svrg = [
    NetworkSVRG(p,
                n_iters=n_iters,
                n_mix=n,
                n_inner_iters=n_inner_iters,
                eta=eta_1 / 10,
                x_0=x_0,
                W=W) for n in n_mix
]

exps = exps_dane + exps_svrg

res = run_exp(exps,
              kappa=kappa,
              max_iter=n_iters,
              name='extra_comm_alpha_' + str(alpha),
              save=True)

plt.show()
Exemplo n.º 6
0
                 verbose=True),
    NetworkDANE(p, n_iters=n_iters, mu=mu, x_0=x_0, W=W, verbose=True),
]

# exps = [
# NetworkGD(p, n_iters=n_dgd_iters, eta=eta, x_0=x_0, W=W),
# NetworkSVRG(p, n_iters=n_svrg_iters, n_inner_iters=n_inner_iters, eta=eta/20, mu=0, x_0=x_0, W=W, batch_size=batch_size, verbose=True),
# NetworkSARAH(p, n_iters=n_svrg_iters, n_inner_iters=n_inner_iters, eta=eta/20, mu=0, x_0=x_0, W=W, batch_size=batch_size, verbose=True),
# NetworkDANE(p, n_iters=n_iters, mu=1e-2, x_0=x_0, W=W, verbose=True),
# ]

exps = single_machine + distributed + network

res = run_exp(exps,
              kappa=kappa,
              max_iter=n_iters,
              name='gisette',
              n_process=1,
              save=True)

tmp = [x.get_results() for x in res if x.get_name() == 'NetworkDANE'][0]
k = np.exp(
    np.log(tmp['func_error'][-1] / tmp['func_error'][0]) /
    len(tmp['func_error']))
print('NetworkDANE\'s convergence rate is: ' + str(k))
print('1 - 1/ (2 kappa) = ' + str(1 - 1 / (2 * kappa)))


def accuracy(w):
    if len(w.shape) > 1:
        w = w.mean(axis=1)
    Y_hat = p.X_val.dot(w)
Exemplo n.º 7
0
# Star topology
p.generate_star_graph()
W, alpha = generate_mixing_matrix(p)
alpha_list.append(alpha)

exps += [
    NetworkDANE(p, n_iters=n_iters, mu=1, x_0=x_0, W=W),
    NetworkSVRG(p,
                n_iters=n_svrg_iters,
                n_inner_iters=n_inner_iters,
                eta=eta_1 / 40,
                x_0=x_0,
                W=W),
]

res = run_exp(exps, n_process=1, save=False, plot=False)

save(res[0:2], 0, 'centered')
save(res[2:4], alpha_list[1], 'er')
save(res[4:6], alpha_list[2], 'ring')
save(res[6:8], alpha_list[3], 'grid')
save(res[8:10], alpha_list[4], 'star')

end = time.time()
print('Total running time is {:.2f}s'.format(end - start))

prop_cycle = plt.rcParams['axes.prop_cycle']
colors = prop_cycle.by_key()['color']

plt.figure(0)
plt.figure(1)