Exemplo n.º 1
0
 def test_HintSVM(self):
     trn_ds = Dataset(
         self.X, np.concatenate([self.y[:5], [None] * (len(self.y) - 5)]))
     qs = HintSVM(trn_ds, random_state=1126)
     qseq = run_qs(trn_ds, qs, self.y, self.quota)
     assert_array_equal(
         qseq, np.array([24, 235, 228, 209, 18, 143, 119, 90, 149, 207]))
Exemplo n.º 2
0
 def test_quire(self):
     trn_ds = Dataset(
         self.X, np.concatenate([self.y[:5], [None] * (len(self.y) - 5)]))
     qs = QUIRE(trn_ds)
     qseq = run_qs(trn_ds, qs, self.y, self.quota)
     assert_array_equal(
         qseq, np.array([117, 175, 256, 64, 103, 118, 180, 159, 129, 235]))
Exemplo n.º 3
0
 def test_DensityWeightedUncertaintySampling(self):
     trn_ds = Dataset(
         self.X, np.concatenate([self.y[:10], [None] * (len(self.y) - 10)]))
     qs = DWUS(trn_ds, random_state=1126)
     qseq = run_qs(trn_ds, qs, self.y, self.quota)
     assert_array_equal(
         qseq, np.array([30, 179, 104, 186, 28, 65, 142, 62, 257, 221]))
Exemplo n.º 4
0
    def test_RandomSampling(self):

        trn_ds = Dataset(
            self.X, np.concatenate([self.y[:5], [None] * (len(self.y) - 5)]))
        qs = RandomSampling(trn_ds, random_state=1126)
        qseq = run_qs(trn_ds, qs, self.y, self.quota)
        assert_array_equal(
            qseq, np.array([33, 143, 198, 29, 248, 92, 236, 212, 185, 163]))
Exemplo n.º 5
0
 def test_UcertaintySamplingLc(self):
     random.seed(1126)
     trn_ds = Dataset(
         self.X, np.concatenate([self.y[:10], [None] * (len(self.y) - 10)]))
     qs = UncertaintySampling(trn_ds,
                              method='lc',
                              model=LogisticRegression())
     qseq = run_qs(trn_ds, qs, self.y, self.quota)
     assert_array_equal(
         qseq, np.array([145, 66, 82, 37, 194, 60, 191, 211, 245, 131]))
Exemplo n.º 6
0
    def test_quire_mykernel(self):
        def my_kernel(X, Y):
            return np.dot(X, Y.T)

        np.random.seed(1126)
        trn_ds = Dataset(
            self.X, np.concatenate([self.y[:5], [None] * (len(self.y) - 5)]))
        qs = QUIRE(trn_ds, kernel=my_kernel)
        qseq = run_qs(trn_ds, qs, self.y, self.quota)
        assert_array_equal(
            qseq, np.array([9, 227, 176, 110, 52, 117, 228, 205, 103, 175]))
Exemplo n.º 7
0
 def test_query_by_committee_kl_divergence(self):
     trn_ds = Dataset(
         self.X, np.concatenate([self.y[:10], [None] * (len(self.y) - 10)]))
     qs = QueryByCommittee(trn_ds,
                           disagreement='kl_divergence',
                           models=[
                               LogisticRegression(C=1.0),
                               LogisticRegression(C=0.01),
                               LogisticRegression(C=100)
                           ],
                           random_state=1126)
     qseq = run_qs(trn_ds, qs, self.y, self.quota)
     assert_array_equal(
         qseq, np.array([228, 111, 162, 243, 213, 122, 110, 108, 156, 37]))
Exemplo n.º 8
0
 def test_query_by_committee_vote(self):
     #self.skipTest("In this version we randomize make queries")
     trn_ds = Dataset(
         self.X, np.concatenate([self.y[:10], [None] * (len(self.y) - 10)]))
     qs = QueryByCommittee(trn_ds,
                           disagreement='vote',
                           models=[
                               LogisticRegression(C=1.0),
                               LogisticRegression(C=0.01),
                               LogisticRegression(C=100)
                           ],
                           random_state=1126)
     qseq = run_qs(trn_ds, qs, self.y, self.quota)
     assert_array_equal(qseq,
                        np.array([10, 12, 11, 13, 16, 14, 17, 18, 19, 21]))
Exemplo n.º 9
0
 def test_ActiveLearningByLearning(self):
     trn_ds = Dataset(
         self.X, np.concatenate([self.y[:10], [None] * (len(self.y) - 10)]))
     qs = ActiveLearningByLearning(trn_ds,
                                   T=self.quota,
                                   query_strategies=[
                                       UncertaintySampling(
                                           trn_ds,
                                           model=LogisticRegression()),
                                       HintSVM(trn_ds, random_state=1126)
                                   ],
                                   model=LogisticRegression(),
                                   random_state=1126)
     qseq = run_qs(trn_ds, qs, self.y, self.quota)
     assert_array_equal(
         qseq, np.array([173, 103, 133, 184, 187, 147, 251, 83, 93, 33]))
Exemplo n.º 10
0
    def test_ALBLTestCase(self):
        trn_ds = Dataset(
            self.X, np.concatenate([self.y[:10], [None] * (len(self.y) - 10)]))
        qs = ActiveLearningByLearning(
            trn_ds,
            T=self.quota,
            query_strategies=[
                UncertaintySampling(trn_ds,
                                    model=SVM(kernel="linear",
                                              decision_function_shape="ovr")),
                QUIRE(trn_ds),
                RandomSampling(trn_ds)
            ],
            model=SVM(kernel="linear", decision_function_shape="ovr"),
            random_state=1126)

        qseq = run_qs(trn_ds, qs, self.y, self.quota)
        assert_array_equal(
            qseq, np.array([173, 103, 133, 184, 187, 147, 251, 83, 93, 33]))
Exemplo n.º 11
0
 def test_quire(self):
     trn_ds = Dataset(self.X, np.concatenate([self.y[:10], [None] * 10]))
     qs = RandomSampling(trn_ds, random_state=2019)
     qseq = run_qs(trn_ds, qs, self.y, self.quota)
     assert_array_equal(qseq,
                        np.array([18, 12, 19, 16, 10, 11, 14, 13, 15, 17]))
Exemplo n.º 12
0
 def test_quire(self):
     trn_ds = Dataset(self.X, np.concatenate([self.y[:10], [None] * 10]))
     qs = QUIRE(trn_ds)
     qseq = run_qs(trn_ds, qs, self.y, self.quota)
     assert_array_equal(qseq,
                        np.array([10, 11, 12, 13, 14, 15, 16, 18, 19, 17]))
Exemplo n.º 13
0
 def test_quire(self):
     trn_ds = Dataset(self.X, np.concatenate([self.y[:6], [None] * 4]))
     qs = QUIRE(trn_ds)
     qseq = run_qs(trn_ds, qs, self.y, self.quota)
     assert_array_equal(qseq, np.array([6, 7, 9, 8]))