Exemplo n.º 1
0
def evaluate(encoder, decoder, sentence, dictionary, max_length=MAX_LENGTH):
    with torch.no_grad():
        input_tensor = tensorFromSentence(dictionary, sentence)
        input_length = input_tensor.size()[0]
        encoder_hidden = encoder.initHidden()

        encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)

        for ei in range(input_length):
            encoder_output, encoder_hidden = encoder(input_tensor[ei],
                                                     encoder_hidden)
            encoder_outputs[ei] += encoder_output[0, 0]

        decoder_input = torch.tensor([[SOS_token]], device=device)  # SOS

        decoder_hidden = encoder_hidden

        decoded_words = []
        decoder_attentions = torch.zeros(max_length, max_length)

        for di in range(max_length):
            decoder_output, decoder_hidden, decoder_attention = decoder(
                decoder_input, decoder_hidden, encoder_outputs)
            decoder_attentions[di] = decoder_attention.data
            topv, topi = decoder_output.data.topk(1)
            if topi.item() == EOS_token:
                decoded_words.append('<EOS>')
                break
            else:
                decoded_words.append(dictionary.index2token[topi.item()])

            decoder_input = topi.squeeze().detach()

        return decoded_words, decoder_attentions[:di + 1]
Exemplo n.º 2
0
def embed_input_sentence(input_pair, encoder, max_length=MAX_LENGTH):
    """Embeds the input sentence using a trained encoder model"""
    with torch.no_grad():
        if encoder.trainable_model:
            input_tensor, target_tensor = utils.tensorsFromPair(input_pair)
            
            input_length = input_tensor.size()[0]
            encoder_hidden = encoder.initHidden()
            encoder_outputs = torch.zeros(max_length+1, encoder.hidden_size, device=DEVICE)
    
            for ei in range(input_length):
                encoder_output, encoder_hidden = encoder(input_tensor[ei],
                                                         encoder_hidden)
                encoder_outputs[ei] += encoder_output[0, 0]
    
            decoder_hidden = encoder_hidden
            
            return decoder_hidden, target_tensor, encoder_outputs
            
        else:
            target_tensor = utils.tensorFromSentence(vocab_index, input_pair[1])
            decoder_hidden = encoder.sentence_embedding(input_pair[0])
            decoder_hidden = layer_normalize(decoder_hidden)
        
            return decoder_hidden, target_tensor, None
Exemplo n.º 3
0
def evaluate(encoder, decoder, sentence, training_ans, input_lang, output_lang, max_length=utils.MAX_LENGTH, rl=True):
    with torch.no_grad():
        
        input_tensor = utils.tensorFromSentence(input_lang, sentence, device )
        
        input_length = input_tensor.size(0)
        print(" evaluation input_length: ", input_length) 

        """#!!! 
        encoder_hidden = encoder.initHidden() 
        encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)
        for ei in range(input_length):
            encoder_output, encoder_hidden = encoder(input_tensor[ei] )
            encoder_outputs[ei] = encoder_output[0, 0] ; """ 
        
        encoder_hidden = encoder(input_tensor)
        
        encoder_hidden = encoder_hidden.unsqueeze(0)
    
        decoder_input = torch.tensor([[utils.SOS_token]], device=device)
    
        decoder_hidden = encoder_hidden
        
        #decoder_hidden_input = decoder_hidden #!!!

        # Without teacher forcing: use its own predictions as the next input
        decoded_words = [] #!

        for di in range(max_length):
            #print(di, " decoder_hidden shape: ", decoder_hidden.size(), " \n ",  decoder_hidden )
            decoder_hidden = decoder_hidden[:, 0, :]  
            decoder_hidden = decoder_hidden.view(1,1,256)
            
            decoder_output, decoder_hidden = decoder( decoder_input, decoder_hidden)
            #    decoder_input, decoder_hidden, encoder_outputs )
            topv, topi = decoder_output.topk(1)
            #!!!
            if topi.item() == utils.EOS_token:
                decoded_words.append('<EOS>')
                break
            else:
                decoded_words.append(output_lang.index2word[topi.item()])
            #!!!
            decoder_input = topi.squeeze().detach()  # detach from history as input

            if decoder_input.item() == utils.EOS_token:
                break;
                
        decoded_sentence = str(" ").join(decoded_words) 
        print("\n  --query--> ", decoded_sentence, "\n ") 
        
        if (not rl) or (training_ans is None):
            return decoded_sentence 
        else:
            rewrd = reward.get_reward(decoded_sentence, training_ans )
            print("\n  --reward--> ", rewrd)
            return rewrd 
Exemplo n.º 4
0
def evaluate(encoder, decoder, sentence, input_lang,output_lang, max_length, device):
    with torch.no_grad():
        input_tensor = tensorFromSentence(input_lang, sentence)
        input_length = input_tensor.size()[0]



        encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)

        if encoder.__class__.__name__ == 'EncoderGRU' or encoder.__class__.__name__ == 'EncoderLSTM':
            encoder_hidden = encoder.initHidden()

            for ei in range(input_length):
                encoder_output, encoder_hidden = encoder(input_tensor[ei], encoder_hidden)
                encoder_outputs[ei] += encoder_output[0, 0]


        elif encoder.__class__.__name__ == 'EncoderPositional' or encoder.__class__.__name__ == 'EncoderPositional_AIAYN':
            encoder_outputs, encoder_hidden = encoder(input_tensor)

        decoder_input = torch.tensor([[0]], device=device)  # SOS
        decoder_hidden = encoder_hidden
        decoded_words = []
        decoder_attentions = torch.zeros(max_length, max_length)

        if encoder.__class__.__name__ == 'EncoderLSTM':
            decoder_hidden = decoder_hidden[0]

        for di in range(max_length):
            decoder_output, decoder_hidden, decoder_attention = decoder(
                decoder_input, decoder_hidden, encoder_outputs)
            #TODO encoder_outputs --> encoder_hidden?




            decoder_attentions[di] = decoder_attention.data
            topv, topi = decoder_output.data.topk(1)
            if topi.item() == 1: #EOS token
                decoded_words.append('<EOS>')
                break
            else:
                decoded_words.append(output_lang.index2word[topi.item()])

            decoder_input = topi.squeeze().detach()

        return decoded_words, decoder_attentions[:di + 1]
Exemplo n.º 5
0
def tensorsFromPair(pair):
    input_tensor = tensorFromSentence(input_lang, pair[0])
    target_tensor = tensorFromSentence(output_lang, pair[1])
    return (input_tensor, target_tensor)
Exemplo n.º 6
0
def train(input_pair, encoder, decoder, encoder_optimizer, decoder_optimizer,
          criterion, teacher_forcing_ratio, max_length=MAX_LENGTH):
    """Model training logic, initializes graph, creates encoder outputs matrix for attention model,
    applies teacher forcing (randomly), calculates the loss and trains the models"""
    if encoder.trainable_model:
        # Encode sentences using encoder model
        input_tensor, target_tensor = utils.tensorsFromPair(input_pair)
        decoder_hidden, encoder_outputs, encoder_optimizer = train_encoder(
                    input_tensor, encoder, encoder_optimizer, max_length)
    else:
        # Encode sentences using pretrained encoder model
        target_tensor = utils.tensorFromSentence(vocab_index, input_pair[1])
        decoder_hidden = encoder.sentence_embedding(input_pair[0])
        decoder_hidden = layer_normalize(decoder_hidden)
    
    # Clear the gradients from the decoder optimizer
    decoder_optimizer.zero_grad()
    target_length = target_tensor.size(0)
    
    decoder_input = torch.tensor([[SOS_token]], device=DEVICE)
    loss = 0
    
    # Randomly apply teacher forcing subject to teacher forcing ratio
    use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False

    if use_teacher_forcing:
        # Teacher forcing: Feed the target as the next input
        for di in range(target_length):
            if decoder.uses_attention:
                decoder_output, decoder_hidden, _ = decoder(
                    decoder_input, decoder_hidden, encoder_outputs)
            else:
                decoder_output, decoder_hidden = decoder(
                    decoder_input, decoder_hidden)
            
            loss += criterion(decoder_output, target_tensor[di])
            decoder_input = target_tensor[di]  # Teacher forcing: set next input to correct target

    else:
        # Without teacher forcing: use its own predictions as the next input
        for di in range(target_length):
            if decoder.uses_attention:
                decoder_output, decoder_hidden, _ = decoder(
                    decoder_input, decoder_hidden, encoder_outputs)
            else:
                decoder_output, decoder_hidden = decoder(
                    decoder_input, decoder_hidden)
            
            topv, topi = decoder_output.topk(1)
            decoder_input = topi.squeeze().detach()  # detach from history as input

            loss += criterion(decoder_output, target_tensor[di])
            if decoder_input.item() == EOS_token:
                break
            
    # Calculate the error and blackpropogate through the network 
    loss.backward()
    
    if encoder.trainable_model:
        encoder_optimizer.step()
    decoder_optimizer.step()

    return loss.item() / target_length