Exemplo n.º 1
0
def testVvGlobCoup(f_args):
    thread_id, network, adjMatrix = f_args  # deconstruct the f_arguments
    start = time.perf_counter()  # for timing the algorithm

    output_line = (
        'Varying Variances Globally Coupled Bayesian Piece-Wise Linear Regression with moves on '
        + 'change-points and parent sets on Yeast Data.')
    print(output_line)
    logger.info(output_line)  # Print and write output

    baNet = Network([network], args.chain_length, args.burn_in, args.lag)
    baNet.infer_network('var_glob_coup_nh_dbn')

    true_inc = adjMatrix[
        0]  # For the moment we just get the adj matrix of the first cp
    flattened_true, flattened_scores = transformResults(
        true_inc, baNet.proposed_adj_matrix)

    finish = time.perf_counter()
    print('My thread id is: ', thread_id, ' and I took: ',
          round(finish - start, 2), ' to run.')
    file_name = 'sim_seg_glob_coup_dbn_' + str(
        thread_id) + '.pckl'  # set filename that is based on thread id

    return baNet, file_name, flattened_true, flattened_scores
Exemplo n.º 2
0
def test_h_dbn(f_args):
    thread_id, network, adjMatrix = f_args  # deconstruct the f_arguments
    start = time.perf_counter()  # for timing the algorithm

    output_line = ('Bayesian Linear Regression with moves on' +
                   'the parent set only. \n')
    print(output_line)
    logger.info(output_line)  # Print and write output

    change_points = [
    ]  # set the cps empty list because this is the homegeneous version
    baNet = Network([network], args.chain_length, args.burn_in, args.lag,
                    change_points)  # Create theh BN obj
    baNet.infer_network(
        'h_dbn')  # Do the fixed parents version of the DBN algo

    true_inc = adjMatrix[
        0]  # For the moment we just get the adj matrix of the first cp
    flattened_true, flattened_scores = transformResults(
        true_inc, baNet.proposed_adj_matrix)

    finish = time.perf_counter()
    print('My thread id is: ', thread_id, ' and I took: ',
          round(finish - start, 2), ' to run.')
    file_name = 'sim_h_dbn_' + str(
        thread_id) + '.pckl'  # set filename that is based on thread id

    return baNet, file_name, flattened_true, flattened_scores
Exemplo n.º 3
0
def testGlobCoupPwBlrWithCpsParentMoves(data, true_inc):
  output_line = (
    'Full Parents Credible Intervals Globally Coupled Bayesian Piece-Wise Linear Regression' +
    'with moves on change-points only Yeast Data.'
  )
  print(output_line) ; logger.info(output_line) # Print and write output

  baNet = Network(data, args.chain_length, args.burn_in, args.lag)
  baNet.infer_network('fp_glob_coup_nh_dbn')

  flattened_true, flattened_scores = transformResults(true_inc, baNet.proposed_adj_matrix)
  adjMatrixRoc(flattened_scores, flattened_true, args.verbose)

  # save the chain into the output folder
  save_chain('fp_glob_coup_dbn.pckl', baNet)
Exemplo n.º 4
0
def testVvGlobCoup(data, true_inc):
    output_line = (
        'Varying Variances Globally Coupled Bayesian Piece-Wise Linear Regression with moves on '
        + 'change-points and parent sets on Yeast Data.')
    print(output_line)
    logger.info(output_line)  # Print and write output

    baNet = Network(data, args.chain_length, args.burn_in, args.lag)
    baNet.infer_network('var_glob_coup_nh_dbn')

    flattened_true, flattened_scores = transformResults(
        true_inc, baNet.proposed_adj_matrix)
    adjMatrixRoc(flattened_scores, flattened_true, args.verbose)

    # save the chain into the output folder
    save_chain('vv_glob_coup_dbn.pckl', baNet)
Exemplo n.º 5
0
def main():
    # true incidence for yeast data
    # true_inc = [
    #   [0, 0, 1, 0, 1],
    #   [1, 0, 0, 1, 0],
    #   [0, 1, 0, 0 ,0],
    #   [0, 1, 1, 0, 0],
    #   [0, 0, 1, 0, 0]
    # ]
    # true incidence for simulated data
    true_inc = [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0],
                [1, 0, 1, 0, 0, 0], [1, 1, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0]]
    nmbr_chains = 5
    model_name = 'sim_glob_coup_dbn'
    chains = []
    for idx in range(nmbr_chains):
        file_name = model_name + '_' + str(idx + 1) + '.pckl'
        curr_chain = load_chain(file_name)

        _, flattened_scores = transformResults(true_inc,
                                               curr_chain.proposed_adj_matrix)
        chains.append(flattened_scores)

    colors = ['tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:blue']
    labels = ['chain_1', 'chain_2', 'chain_3', 'chain_4', 'chain_5']
    fig, ax = plt.subplots()
    for idx, edge_scores in enumerate(chains):
        _x = [x + 1 for x in range(len(edge_scores))]
        color = colors[idx]
        label = labels[idx]
        ax.scatter(_x,
                   edge_scores,
                   c=color,
                   label=label,
                   alpha=0.3,
                   edgecolors='none')
        ax.xaxis.set_major_locator(
            MaxNLocator(integer=True))  # force x ticks as integers

    ax.legend()
    ax.grid(True)

    plt.xlabel('Edge Number')
    plt.ylabel('Edge Score')
    plt.show()
Exemplo n.º 6
0
def testPwBlrWithParentMoves(data, true_inc):
    output_line = (
        'Bayesian Piece-Wise Linear Regression with moves on ' +
        'the parent set only with fixed changepoints for the Yeast Data. \n')
    print(output_line)
    logger.info(output_line)  # Print and write output
    if args.change_points == 0:
        args.change_points = []
    args.change_points.append(data.shape[0] +
                              1)  # append the len data + 1 so the algo works
    baNet = Network(data, args.chain_length, args.burn_in, args.lag,
                    args.change_points)  # Create theh BN obj
    baNet.infer_network(
        'fixed_nh_dbn')  # Do the fixed changepoints version of the DBN algo

    flattened_true, flattened_scores = transformResults(
        true_inc, baNet.proposed_adj_matrix)
    adjMatrixRoc(flattened_scores, flattened_true, args.verbose)
Exemplo n.º 7
0
def test_h_dbn(data, true_inc):
  output_line = (
    'Homogeneous Dinamic Bayesian Linear Regression with full parents ' +
    'for the Yeast data. \n'
  )
  print(output_line) ; logger.info(output_line) # Print and write output

  change_points = [] # set the cps empty list because this is the homegeneous version

  # Create/Call the Network objects/methods
  baNet = Network(data, args.chain_length, args.burn_in, args.lag, args.change_points) # Create theh BN obj
  baNet.infer_network('fp_h_dbn') # Do the fixed parents version of the DBN algo
  
  # trueAdjMatrix = adjMatrix[0] # For the moment we just get the adj matrix of the first cp
  flattened_true, flattened_scores = transformResults(true_inc, baNet.proposed_adj_matrix)
  adjMatrixRoc(flattened_scores, flattened_true, args.verbose)
  
  # save the chain into the output folder
  save_chain('fp_h_dbn.pckl', baNet)
Exemplo n.º 8
0
def testPwBlrWithCpsParentMoves(data, true_inc):
    output_line = ('Bayesian Piece-Wise Linear Regression with moves on ' +
                   'change-points and parent sets for the Yeast data.')
    print(output_line)
    logger.info(output_line)  # Print and write output
    if args.change_points == 0:
        args.change_points = []

    # to get the total length of the data over the segments
    # data_len = 0
    # for segment in data:
    #   data_len = data_len + segment.shape[0]

    # args.change_points.append(data_len + 1) # append the len data + 1 so the algo works
    baNet = Network(data, args.chain_length, args.burn_in, args.lag)
    baNet.infer_network('varying_nh_dbn')

    flattened_true, flattened_scores = transformResults(
        true_inc, baNet.proposed_adj_matrix)
    adjMatrixRoc(flattened_scores, flattened_true, args.verbose)

    # save the chain into the output folder
    save_chain('nh_dbn.pckl', baNet)