Exemplo n.º 1
0
    def forward(self, noise_init, noise_amp, mode='rand'):

        x_prev_out = self.body[0](F.pad(noise_init, self.p3d))

        for idx, block in enumerate(self.body[1:], 1):
            x_prev_out = torch.tanh(x_prev_out)

            # Upscale
            x_prev_out_up = utils.upscale(x_prev_out, idx, self.opt)

            # Add noise if "random" sampling, else, add no noise is "reconstruction" mode
            if mode == 'rand':
                x_prev_out_up_2 = utils.interpolate_3D(
                    x_prev_out,
                    size=[
                        x_prev_out_up.shape[-3] + (self.opt.num_layer + 2) * 2,
                        x_prev_out_up.shape[-2] + (self.opt.num_layer + 2) * 2,
                        x_prev_out_up.shape[-1] + (self.opt.num_layer + 2) * 2
                    ])
                noise = utils.generate_noise(ref=x_prev_out_up_2)
                x_prev = block(x_prev_out_up_2 + noise * noise_amp[idx])
            else:
                x_prev = block(F.pad(x_prev_out_up, self.p3d))
            x_prev_out = x_prev + x_prev_out_up

        out = torch.tanh(x_prev_out)
        return out
Exemplo n.º 2
0
def movnect(x, j):
    with tf.compat.v1.variable_scope('movnect') as vs:
        with tf.compat.v1.variable_scope('block13_a'):
            init_x = x
            x = slim.conv2d(x, 368, 1, 1, activation_fn=tf.nn.relu, data_format='NCHW', normalizer_fn=slim.batch_norm)
            x = slim.separable_conv2d(x, 368, 3, 1, activation_fn=tf.nn.relu, data_format='NCHW', normalizer_fn=slim.batch_norm)
            x = slim.conv2d(x, 256, 1, 1, activation_fn=None, data_format='NCHW', normalizer_fn=slim.batch_norm)
            init_x = slim.conv2d(init_x, 256, 1, 1, activation_fn=None, data_format='NCHW')
            x = x + init_x
        with tf.compat.v1.variable_scope('block13_b'):
            x = slim.conv2d(x, 192, 1, 1, activation_fn=tf.nn.relu, data_format='NCHW', normalizer_fn=slim.batch_norm)
            x = slim.separable_conv2d(x, 192, 3, 1, activation_fn=tf.nn.relu, data_format='NCHW', normalizer_fn=slim.batch_norm)
            x = slim.conv2d(x, 192, 1, 1, activation_fn=tf.nn.relu, data_format='NCHW', normalizer_fn=slim.batch_norm)
        with tf.compat.v1.variable_scope('upsample_conv'):
            x = utils.upscale(x, 2, data_format='NCHW')
            non_j_x = slim.conv2d(x, 128, 1, 1, activation_fn=tf.nn.relu, data_format='NCHW', normalizer_fn=slim.batch_norm)
            j_x = slim.conv2d(x, 3 * j, 1, 1, activation_fn=None, data_format='NCHW', normalizer_fn=slim.batch_norm)
            dx, dy, dz = tf.split(j_x, 3, axis=1)
            d_j = tf.abs(dx) + tf.abs(dy) + tf.abs(dz)
            x = tf.concat([non_j_x, d_j, j_x], axis=1)
        with tf.compat.v1.variable_scope('lsat'):
            x = slim.conv2d(x, 128, 1, 1, activation_fn=tf.nn.relu, data_format='NCHW', normalizer_fn=slim.batch_norm)
            x = slim.separable_conv2d(x, 128, 3, 1, activation_fn=tf.nn.relu, data_format='NCHW', normalizer_fn=slim.batch_norm)
            x = slim.separable_conv2d(x, 4*j, 1, 1, activation_fn=None, data_format='NCHW')
    var = tf.contrib.framework.get_variables(vs)
    return x, var  # [256^2 * 4*j]
Exemplo n.º 3
0
def vnect(x, j):
    with tf.compat.v1.variable_scope('vnect') as vs:
        with tf.compat.v1.variable_scope('block1_a'):
            init_x = x
            x = slim.conv2d(x, 512, 1, 1, activation_fn=tf.nn.relu, data_format='NCHW', normalizer_fn=slim.batch_norm)
            x = slim.conv2d(x, 512, 3, 1, activation_fn=tf.nn.relu, data_format='NCHW', normalizer_fn=slim.batch_norm)
            x = slim.conv2d(x, 1024, 1, 1, activation_fn=None, data_format='NCHW', normalizer_fn=slim.batch_norm)
            init_x = slim.conv2d(init_x, 1024, 1, 1, activation_fn=None, data_format='NCHW')
            x = x + init_x
        with tf.compat.v1.variable_scope('block1_b'):
            x = slim.conv2d(x, 256, 1, 1, activation_fn=tf.nn.relu, data_format='NCHW', normalizer_fn=slim.batch_norm)
            x = slim.separable_conv2d(x, 128, 3, 1, activation_fn=tf.nn.relu, data_format='NCHW', normalizer_fn=slim.batch_norm)
            x = slim.conv2d(x, 256, 1, 1, activation_fn=tf.nn.relu, data_format='NCHW', normalizer_fn=slim.batch_norm)
        with tf.compat.v1.variable_scope('upsample_conv'):
            x = utils.upscale(x, 2, 'NCHW')
            non_j_x = slim.conv2d(x, 128, 4, 1, activation_fn=tf.nn.relu, data_format='NCHW', normalizer_fn=slim.batch_norm)
            j_x = slim.conv2d(x, 3 * j, 4, 1, activation_fn=None, data_format='NCHW', normalizer_fn=slim.batch_norm)
            dx, dy, dz = tf.split(j_x, 3, axis=1)
            d_j = tf.sqrt(tf.maximum(dx*dx+dy*dy+dz*dz, 0.))
            # d_j = tf.concat([dx, dy, dz], axis=1)  # temptemptemptemptemp
            x = tf.concat([non_j_x, d_j, j_x], axis=1)
        with tf.compat.v1.variable_scope('lsat'):
            x = slim.conv2d(x, 128, 1, 1, activation_fn=tf.nn.relu, data_format='NCHW', normalizer_fn=slim.batch_norm)
            x = slim.conv2d(x, 4*j, 1, 1, activation_fn=None, data_format='NCHW')
    var = tf.contrib.framework.get_variables(vs)
    return x, var  # [256^2 * 4*j]
def dataset(dataset_train_path,batch_size,scale_factor):
    assert(os.path.exists(dataset_train_path))
    data = []
    for file in os.listdir(dataset_train_path):
        if file.endswith('.bmp'):
            filepath = os.path.join(dataset_train_path,file)
            img = imageio.imread(filepath).dot([0.299, 0.587, 0.114])
            patches = extract_patches(img,(36,36),0.166)

            data += [patches[idx] for idx in range(patches.shape[0])]

    mod_data = [from_numpy(np.expand_dims(blur(upscale(patch,scale_factor),scale_factor),0)).float() for patch in data]
    data = [from_numpy(np.expand_dims(upscale(patch,scale_factor),0)).float() for patch in data]
    l = len(data)
    for idx in range(0,l,batch_size):
        yield stack(mod_data[idx:min(idx+batch_size,l)]),stack(data[idx:min(idx+batch_size,l)])
Exemplo n.º 5
0
    def save_solution(self, file_name="solution.png", scale=3):
        """Saves the solution as png."""
        if self.solution is None:
            raise util.MazeError(
                "Cannot save solution because it is not assigned.\n"
                "Use the \"solve\" method to solve a maze."
            )

        Image.fromarray(util.upscale(self.solution, scale), "RGB").save(file_name, "png")
Exemplo n.º 6
0
    def save_maze(self, file_name="maze.png", scale=3):
        """Saves the maze as png."""
        if self.maze is None:
            raise util.MazeError(
                "Cannot save maze because it is not assigned.\n"
                "Use the \"create\" or \"load_maze\" method to create or load a maze."
            )

        Image.fromarray(util.upscale(self.maze, scale), "RGB").save(file_name, "png")
Exemplo n.º 7
0
    def save_maze(self, file_name="maze.png", line=5, path=15):
        """Saves the maze as png."""
        if self.maze is None:
            raise util.MazeError(
                "Cannot save maze because it is not assigned.\n"
                "Use the \"create\" or \"load_maze\" method to create or load a maze."
            )

        img = Image.fromarray(util.upscale(self.maze, line, path), "RGB")
        img.save("uncropped.png")
        print(img)
        img = PIL.ImageOps.invert(img).convert("L")
        newImage = Image.new("L", (1085, 720))
        newImage.paste(img, (0, 7, 1085, 7 + 705))
        newImage.save(file_name, "png")
        return newImage
Exemplo n.º 8
0
    def refinement_layers(self, start_idx, x_prev_out, noise_amp, mode):
        for idx, block in enumerate(self.body[start_idx:], start_idx):
            if self.opt.vae_levels == idx + 1:
                x_prev_out.detach_()

            # Upscale
            x_prev_out_up = utils.upscale(x_prev_out, idx + 1, self.opt)

            # Add noise if "random" sampling, else, add no noise is "reconstruction" mode
            if mode == 'rand':
                noise = utils.generate_noise(ref=x_prev_out_up)
                x_prev = block(x_prev_out_up + noise * noise_amp[idx + 1])
            else:
                x_prev = block(x_prev_out_up)

            x_prev_out = torch.tanh(x_prev + x_prev_out_up)

        return x_prev_out
Exemplo n.º 9
0
def train_and_validate(dataset_path,
                       batch_size,
                       scale_factor,
                       num_epochs,
                       learning_rate,
                       weight_decay,
                       output_dir,
                       verbose=True):

    model_output_dir = os.path.join(output_dir, 'model')

    model = network.ten()

    logging.info('TEN Model loaded')
    if verbose:
        print('TEN Model loaded')
        total_params = sum(p.numel() for p in model.parameters())
        print(f'Total Parameters: {total_params}')

    if cuda:
        model = model.cuda()

    model.train()

    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=learning_rate,
                                 weight_decay=weight_decay)

    logging.info('Adam optimizer loaded')
    if verbose:
        print('Adam optimizer loaded')

    total_epoch_time = 0
    losses = []

    # Set initial best_loss arbitrarily high
    best_val_loss = 2.0e50

    for epoch in range(1, num_epochs + 1):

        model.train()

        logging.info(f'Epoch {epoch} Start')
        if verbose:
            print(f'\n<----- START EPOCH {epoch} ------->\n')

        start_time = time()

        total_loss_for_this_epoch = 0

        # For each batch
        batch = 1
        for patches, gt in dataset(dataset_path, batch_size, scale_factor):

            optimizer.zero_grad()

            if cuda:
                patches = patches.cuda()
                gt = gt.cuda()

            pred = model(patches)
            loss = compute_loss(pred, gt)

            logging.info(f'Epoch {epoch} Batch {batch} Loss {loss.item()}')
            if verbose and (batch - 1) % 10 == 0:
                print(f'Epoch {epoch} Batch {batch} Loss {loss.item()}')

            loss.backward()
            optimizer.step()

            total_loss_for_this_epoch += loss.item()

            batch += 1

        avg_loss = total_loss_for_this_epoch / batch
        losses.append(avg_loss)

        epoch_time = time() - start_time
        if verbose:
            print(f'Epoch time: {epoch_time}')
        total_epoch_time += epoch_time

        # Validation
        model.eval()
        val_img_file = random.choice(
            [f for f in os.listdir(dataset_path) if f.endswith('.bmp')])
        val_img = imageio.imread(os.path.join(dataset_path, val_img_file)).dot(
            [0.299, 0.587, 0.114])
        mod_val_img = torch.from_numpy(
            blur(upscale(val_img, scale_factor),
                 scale_factor)).float().unsqueeze(0).unsqueeze(0)
        val_img = torch.from_numpy(upscale(
            val_img, scale_factor)).float().unsqueeze(0).unsqueeze(0)
        if cuda:
            mod_val_img = mod_val_img.cuda()
            val_img = val_img.cuda()
        out = model(mod_val_img)
        val_loss = compute_loss(out, val_img).item()

        if verbose:
            print(
                f'Epoch {epoch} Validation Image {val_img_file} Loss {val_loss}'
            )

        # Save current model
        save_checkpoint(
            {
                'epoch': epoch,
                'state_dict': model.state_dict(),
                'optimizer': optimizer.state_dict(),
            }, model_output_dir, 'current.pth')
        logging.info('Current model saved')
        if verbose:
            print('Current model saved')

        # Save best model
        if val_loss < best_val_loss:
            best_val_loss = val_loss
            save_checkpoint(
                {
                    'epoch': epoch,
                    'state_dict': model.state_dict(),
                    'optimizer': optimizer.state_dict(),
                }, model_output_dir, 'best.pth')
            logging.info('Best model saved')
            if verbose:
                print('Best model saved')

        # Save model every 20 epochs
        if (epoch) % 20 == 0:
            save_checkpoint(
                {
                    'epoch': epoch,
                    'state_dict': model.state_dict(),
                    'optimizer': optimizer.state_dict(),
                }, model_output_dir, f'epoch_{epoch}.pth')
            logging.info(f'Epoch {epoch} Model saved')
            if verbose:
                print(f'Epoch {epoch} Model saved')

        # Learning rate decay

        if epoch % 30 == 0 and epoch <= 60:
            learning_rate = learning_rate / 10
            for param_group in optimizer.param_groups:
                param_group['lr'] = learning_rate
            logging.info(
                f'Epoch {epoch}: Learning rate decayed by factor of 10')

        logging.info(f'Epoch {epoch} completed')
        if verbose:
            print(
                f'\n<----- END EPOCH {epoch} Time elapsed: {time()-start_time}------->\n'
            )

    logging.info('All epochs completed')
    logging.info(f'Average Time: {total_epoch_time/num_epochs:.4f} seconds')
    logging.info(f'Average Loss: {sum(losses) / len(losses):.4f}')
    if verbose:
        print('All epochs completed')
        print(f'Average Time: {total_epoch_time/num_epochs:.4f} seconds')
        print(f'Average Loss: {sum(losses) / len(losses):.4f}')

    if verbose:
        print('Losses array: ', losses)
        print('Best Validation Loss', best_val_loss)