Exemplo n.º 1
0
    def apply(self):
        # self.log.debug("Applying {}".format(self))

        trip = self.trips[self.trip]

        if self.VERIFY_COST_DELTA:
            old = utils.weighted_trip_length(trip[:, utils.LOCATION],
                                             trip[:, utils.WEIGHT])

        trip_1 = trip[trip[:, utils.LON] < self.longitude_to_split]
        trip_1 = trip_1[trip_1[:, utils.LAT].argsort()[::-1]]
        trip_2 = trip[trip[:, utils.LON] >= self.longitude_to_split]
        trip_2 = trip_2[trip_2[:, utils.LAT].argsort()[::-1]]
        self.first_trip_percentage = len(trip_1) / len(trip)

        existing_trips = [t[0, utils.TRIP] for t in self.trips]
        new_trip_id = np.max(existing_trips) + 1
        trip_2[:, utils.TRIP] = new_trip_id
        self.trips[self.trip] = trip_1
        self.trips.append(trip_2)

        if self.VERIFY_COST_DELTA:
            new = utils.weighted_trip_length(self.trips[self.trip][:, utils.LOCATION], self.trips[self.trip][:, utils.WEIGHT]) + \
                utils.weighted_trip_length(trip_2[:, utils.LOCATION], trip_2[:, utils.WEIGHT])
            utils.verify_costs_are_equal(self.cost_delta(), new - old)
Exemplo n.º 2
0
  def apply(self):
    if self.trip_to_merge is None:
      Neighbor.log.warning("Not applying trip merge because no valid merge was found")
      return

    # self.log.debug("Applying {}".format(self))

    trip = self.trips[self.trip_to_merge]

    if self.VERIFY_COST_DELTA:
      old = utils.weighted_trip_length(trip[:, utils.LOCATION], trip[:, utils.WEIGHT])
      for trip_index in self.trip_assignments_for_gifts.keys():
        old += utils.weighted_trip_length(self.trips[trip_index][:, utils.LOCATION], self.trips[trip_index][:, utils.WEIGHT])

    for gift, trip_index, index_in_trip in self.gift_insertions:
      gift[utils.TRIP] = self.trips[trip_index][0,1]
      self.trips[trip_index] = np.insert(self.trips[trip_index], index_in_trip, gift, axis=0)

    if self.VERIFY_COST_DELTA:
      new = 0
      for trip_index in self.trip_assignments_for_gifts.keys():
        new += utils.weighted_trip_length(self.trips[trip_index][:, utils.LOCATION], self.trips[trip_index][:, utils.WEIGHT])
      utils.verify_costs_are_equal(self.cost_delta(), new-old)

    # only delete the row afterwards to not mess up the indexes for the cost calculation
    del self.trips[self.trip_to_merge]
Exemplo n.º 3
0
    def apply(self):
        # self.log.debug("Applying {}".format(self))

        source = self.trips[self.trip]
        destination = self.trips[self.destination_trip]

        if self.VERIFY_COST_DELTA:
            old = utils.weighted_trip_length(source[:, utils.LOCATION], source[:, utils.WEIGHT]) + \
                utils.weighted_trip_length(destination[:, utils.LOCATION], destination[:, utils.WEIGHT])

        gift = source[
            self.
            gift_to_move]  # NOTE: This apparently can be index-out-of-bounds!
        gift[utils.TRIP] = destination[0, utils.TRIP]

        destination = np.insert(destination,
                                self.destination_insertion_index,
                                gift,
                                axis=0)
        self.trips[self.destination_trip] = destination

        source = np.delete(source, self.gift_to_move, axis=0)
        self.trips[self.trip] = source

        if self.VERIFY_COST_DELTA:
            new = utils.weighted_trip_length(source[:, utils.LOCATION], source[:, utils.WEIGHT]) + \
                utils.weighted_trip_length(destination[:, utils.LOCATION], destination[:, utils.WEIGHT])
            utils.verify_costs_are_equal(self.cost_delta(), new - old)
Exemplo n.º 4
0
    def apply(self):
        if self.trip_to_merge is None:
            Neighbor.log.warning(
                "Not applying trip merge because no valid merge was found")
            return

        # self.log.debug("Applying {}".format(self))

        trip = self.trips[self.trip_to_merge]

        if self.VERIFY_COST_DELTA:
            old = utils.weighted_trip_length(trip[:, utils.LOCATION],
                                             trip[:, utils.WEIGHT])
            for trip_index in self.modified_trips:
                old += utils.weighted_trip_length(
                    self.trips[trip_index][:, utils.LOCATION],
                    self.trips[trip_index][:, utils.WEIGHT])

        self.trips.clear()
        self.trips.extend(self.trips_with_applied_merge)

        if self.VERIFY_COST_DELTA:
            new = 0
            for trip_index in self.modified_trips:
                new += utils.weighted_trip_length(
                    self.trips[trip_index][:, utils.LOCATION],
                    self.trips[trip_index][:, utils.WEIGHT])
            utils.verify_costs_are_equal(self.cost_delta(), new - old)

        # only delete the row afterwards to not mess up the indexes for the cost calculation
        del self.trips[self.trip_to_merge]
    def apply(self):
        # self.log.debug("Applying {}".format(self))

        if self.VERIFY_COST_DELTA:
            old = utils.weighted_trip_length(self.trip[:, utils.LOCATION],
                                             self.trip[:, utils.WEIGHT])

        self.trip[[self.first_gift, self.second_gift
                   ]] = self.trip[[self.second_gift, self.first_gift]]

        if self.VERIFY_COST_DELTA:
            new = utils.weighted_trip_length(self.trip[:, utils.LOCATION],
                                             self.trip[:, utils.WEIGHT])
            utils.verify_costs_are_equal(self.cost_delta(), new - old)
Exemplo n.º 6
0
def print_stats(file_name=None, df=None, plots=False):
  if file_name is not None:
    df = pd.read_csv(file_name).merge(gifts, on="GiftId")
  if df is None:
    print("Need to specify either file name or df")

  score = utils.weighted_reindeer_weariness(df)
  trip_sizes = df.groupby("TripId").size()
  trips = df.TripId.unique()
  weights = np.array([df[df.TripId == trip].Weight.sum() for trip in trips])
  costs = np.array([utils.weighted_trip_length(df[df.TripId == trip][["Longitude", "Latitude"]], df[df.TripId == trip].Weight) for trip in trips])
  efficiencies = weights / costs
  print("Score: {:.5f}B for {} trips".format(score / 1e9, len(trip_sizes)))
  print("Trip sizes: min/median/max:\t\t{:>6.2f}\t{:>6.2f}\t{:>7.2f};\t{:>6.2f}+-{:>9.2f}".format(
    trip_sizes.min(), trip_sizes.median(), trip_sizes.max(), trip_sizes.mean(), trip_sizes.std()**2))
  print("Costs per trip: min/median/max [M]:\t{:>6.2f}\t{:>6.2f}\t{:>7.2f};\t{:>6.2f}+-{:>9.2f}".format(
    costs.min()/1e6, np.median(costs)/1e6, costs.max()/1e6, costs.mean()/1e6, (costs.std()/1e6)**2))
  print("Weights per trip: min/median/max:\t{:>6.2f}\t{:>6.2f}\t{:>7.2f};\t{:>6.2f}+-{:>9.2f}".format(
    weights.min(), np.median(weights), weights.max(), weights.mean(), (weights.std())**2))
  print("Efficiencies per trip: min/median/max:\t{:>6.2f}\t{:>6.2f}\t{:>7.2f};\t{:>6.2f}+-{:>9.2f}".format(
    efficiencies.min()*1e6, np.median(efficiencies)*1e6, efficiencies.max()*1e6, efficiencies.mean()*1e6, (efficiencies.std()*1e6)**2))

  if plots:
    fig, axes = plt.subplots(2, 2)
    axes[0, 0].hist(weights, bins=100)
    axes[0, 0].set_title("Weights")
    axes[0, 1].hist(costs, bins=100)
    axes[0, 1].set_title("Costs")
    axes[1, 0].hist(efficiencies, bins=100)
    axes[1, 0].set_title("Efficiencies")
    axes[1, 1].hist(trip_sizes, bins=100)
    axes[1, 1].set_title("Trip sizes")
    if file_name is not None:
      fig.suptitle("Stats for {}".format(file_name))
Exemplo n.º 7
0
    def _find_best_split_index(self, trip):
        minimum_cost = np.finfo(np.float64).max
        best_index = None

        # don't split before first item
        for i in range(1, len(trip)):
            first_trip = trip[:i]
            second_trip = trip[i:]
            cost_first_trip = utils.weighted_trip_length(
                first_trip[:, utils.LOCATION], first_trip[:, utils.WEIGHT])
            cost_second_trip = utils.weighted_trip_length(
                second_trip[:, utils.LOCATION], second_trip[:, utils.WEIGHT])
            current_cost = cost_first_trip + cost_second_trip
            if current_cost < minimum_cost:
                minimum_cost = current_cost
                best_index = i
        return best_index, minimum_cost
Exemplo n.º 8
0
    def apply(self):
        # self.log.debug("Applying {}".format(self))

        trip = self.trips[self.trip]

        if self.VERIFY_COST_DELTA:
            old = utils.weighted_trip_length(trip[:, utils.LOCATION],
                                             trip[:, utils.WEIGHT])

        new_trip = trip[self.index_to_split:]
        existing_trips = [t[0, utils.TRIP] for t in self.trips]
        new_trip_id = np.max(existing_trips) + 1
        new_trip[:, utils.TRIP] = new_trip_id
        self.trips[self.trip] = trip[:self.index_to_split]
        self.trips.append(new_trip)

        if self.VERIFY_COST_DELTA:
            new = utils.weighted_trip_length(self.trips[self.trip][:, utils.LOCATION], self.trips[self.trip][:, utils.WEIGHT]) + \
                utils.weighted_trip_length(new_trip[:, utils.LOCATION], new_trip[:, utils.WEIGHT])
            utils.verify_costs_are_equal(self.cost_delta(), new - old)
Exemplo n.º 9
0
    def apply(self):
        # self.log.debug("Applying {}".format(self))

        first_trip = self.trips[self.first_trip]
        second_trip = self.trips[self.second_trip]

        if self.VERIFY_COST_DELTA:
            old = utils.weighted_trip_length(first_trip[:, utils.LOCATION], first_trip[:, utils.WEIGHT]) + \
                utils.weighted_trip_length(second_trip[:, utils.LOCATION], second_trip[:, utils.WEIGHT])

        # extract insertees now (before they're removed) and update their trip assignment
        first_gift_row = first_trip[self.first_gift]
        trip_id_for_second_gift = first_trip[0, utils.TRIP]
        first_gift_row[utils.TRIP] = second_trip[0, utils.TRIP]
        second_gift_row = second_trip[self.second_gift]
        second_gift_row[utils.TRIP] = trip_id_for_second_gift

        # update first trip
        first_trip = np.insert(first_trip,
                               self.first_trip_insertion_index,
                               second_gift_row,
                               axis=0)

        index_to_remove = self.first_gift if self.first_gift < self.first_trip_insertion_index else self.first_gift + 1
        first_trip = np.delete(first_trip, index_to_remove, axis=0)
        self.trips[self.first_trip] = first_trip

        # update second trip
        second_trip = np.insert(second_trip,
                                self.second_trip_insertion_index,
                                first_gift_row,
                                axis=0)

        index_to_remove = self.second_gift if self.second_gift < self.second_trip_insertion_index else self.second_gift + 1
        second_trip = np.delete(second_trip, index_to_remove, axis=0)
        self.trips[self.second_trip] = second_trip

        if self.VERIFY_COST_DELTA:
            new = utils.weighted_trip_length(first_trip[:, utils.LOCATION], first_trip[:, utils.WEIGHT]) + \
                utils.weighted_trip_length(second_trip[:, utils.LOCATION], second_trip[:, utils.WEIGHT])
            utils.verify_costs_are_equal(self.cost_delta(), new - old)
Exemplo n.º 10
0
    def apply(self):
        # self.log.debug("Applying {}".format(self))

        trip = self.trips[self.trip]

        if self.VERIFY_COST_DELTA:
            old = utils.weighted_trip_length(trip[:, utils.LOCATION],
                                             trip[:, utils.WEIGHT])

        gift = trip[self.gift_index]

        trip = np.delete(trip, self.gift_index, axis=0)
        index_to_insert = self.new_index if self.new_index < self.gift_index else self.new_index + 0
        trip = np.insert(trip, index_to_insert, gift, axis=0)

        self.trips[self.trip] = trip

        if self.VERIFY_COST_DELTA:
            new = utils.weighted_trip_length(trip[:, utils.LOCATION],
                                             trip[:, utils.WEIGHT])
            utils.verify_costs_are_equal(self.cost_delta(), new - old)
Exemplo n.º 11
0
    def cost_delta(self):
        if self.cost is not None:
            return self.cost

        trip = self.trips[self.trip]
        cost_of_old_trip = utils.weighted_trip_length(trip[:, utils.LOCATION],
                                                      trip[:, utils.WEIGHT])

        # find split index with minimum cost
        self.index_to_split, cost_of_split = self._find_best_split_index(trip)

        self.cost = cost_of_split - cost_of_old_trip
        return self.cost
Exemplo n.º 12
0
    def cost_delta(self):
        if self.cost is not None:
            return self.cost

        trip = self.trips[self.trip]
        cost_of_old_trip = utils.weighted_trip_length(trip[:, utils.LOCATION],
                                                      trip[:, utils.WEIGHT])

        # check splitting in the middle third of longitudes
        longitudes = np.sort(
            trip[:,
                 utils.LON][:])[int(len(trip) / 3.0):int(len(trip) * 2.0 / 3)]

        minimum_cost = np.finfo(np.float64).max

        for i, lon in enumerate(longitudes):
            # split trips and sort by LAT descending
            trip_1 = trip[trip[:, utils.LON] < lon]
            trip_1 = trip_1[trip_1[:, utils.LAT].argsort()[::-1]]
            trip_2 = trip[trip[:, utils.LON] >= lon]
            trip_2 = trip_2[trip_2[:, utils.LAT].argsort()[::-1]]

            if len(trip_1) * len(trip_2) == 0:
                # don't split here if one of the resulting trips is empty
                continue

            cost_2_1 = utils.weighted_trip_length(trip_1[:, utils.LOCATION],
                                                  trip_1[:, utils.WEIGHT])
            cost_2_2 = utils.weighted_trip_length(trip_2[:, utils.LOCATION],
                                                  trip_2[:, utils.WEIGHT])
            if cost_2_1 + cost_2_2 < minimum_cost:
                minimum_cost = cost_2_1 + cost_2_2
                self.longitude_to_split = lon

        self.cost = minimum_cost - cost_of_old_trip
        return self.cost
Exemplo n.º 13
0
    def evaluate_trips(self):
        unique_trips = self.trips.TripId.unique()
        merged = self.trips.merge(self.gifts, on="GiftId")
        trips = [merged[merged.TripId == t] for t in unique_trips]

        score = utils.weighted_reindeer_weariness(merged)
        utils.log_success_or_error(
            self.log, score < self.current_score,
            "Cost of the {} trips: {:.5f}B ({:.5f}M with {} trips)".format(
                unique_trips.shape[0], score / 1e9,
                (score - self.current_score) / 1e6, self.current_trip_count))
        utils.log_success_or_error(
            self.log, score < self.current_best,
            "Compared to best: {:.5f}M".format(
                (score - self.current_best) / 1e6))

        weights = np.asarray([trip.Weight.sum() for trip in trips])
        self.log.info(
            "Sleigh utilization: min {:.2f}, max {:.2f}, avg {:.2f}, std {:.2f}"
            .format(weights.min(), weights.max(), weights.mean(),
                    weights.std()))

        costs = np.asarray([
            utils.weighted_trip_length(trip[["Latitude", "Longitude"]],
                                       trip.Weight) for trip in trips
        ])
        self.log.info(
            "Trip costs: min {:.2f}M, max {:.2f}M, avg {:.2f}M, std {:.2f}k".
            format(costs.min() / 1e6,
                   costs.max() / 1e6,
                   costs.mean() / 1e6,
                   costs.std() / 1e3))

        stops = np.asarray([trip.shape[0] for trip in trips])
        self.log.info(
            "Stops per trip: min {}, max {}, avg {:.2f}, std {:.2f}".format(
                stops.min(), stops.max(), stops.mean(), stops.std()))

        cache_info = utils.get_cache_info()
        self.log.info("Distance cache info: {} ({:.2f}% hits))".format(
            cache_info,
            100.0 * cache_info.hits / (cache_info.hits + cache_info.misses)))
Exemplo n.º 14
0
  def cost_delta(self):
    if self.cost is not None:
      return self.cost

    self.trip_to_merge, self.trip_assignments_for_gifts = self._find_trip_to_merge()

    if self.trip_to_merge is None:
      return 0

    trip = self.trips[self.trip_to_merge]
    self.gift_insertions = []
    cost_of_insertions = 0

    for trip_index, gift in self.trip_assignments_for_gifts.items():
      index_in_trip, cost = Neighbor.find_best_insertion_index(self.trips[trip_index], gift)
      self.gift_insertions.append((gift, trip_index, index_in_trip))
      cost_of_insertions += cost

    self.cost = cost_of_insertions - utils.weighted_trip_length(trip[:, utils.LOCATION], trip[:, utils.WEIGHT])
    return self.cost