def __get_text(self, chapter_start_url, book_name, topic): ''' 小说正文爬取并写入磁盘 :param chapter_start_url: :param book_name: :param topic: :return: ''' # 文章正文部分是js 用selenium模拟浏览器获取html页面 driver = dr() driver.get(chapter_start_url) # 网络时整个页面没有加载外全会导致抓取内容错误 # 直接调用sheep对整个线程不安全 故采用 ▲t1-▲t2的方式拖延程序 start_time = int(time.time()) while True: end_time = int(time.time()) if end_time - start_time >= 1: break soup = BeautifulSoup(driver.page_source, "html5lib") ps = soup.select("#chapter-content p") text_list = [ "{0}\n".format(p.string.encode("utf-8")) for p in ps if p.string ] driver.quit() io = IO() io.write(text_list, book_name, topic) logging.info( "--------------------{0}{1} ..下载完成--------------------".format( book_name.encode("utf-8"), topic))
def __init__(self, number_of_epochs=1000, content_weight=1e3, style_weight=1e-2, model_name="mobilenetv2_coco_voctrainaug", enable_gpu=False, verbose=False): self.number_of_epochs = number_of_epochs self.content_weight = content_weight self.style_weight = style_weight self.content_layers = ["block5_conv2"] self.style_layers = ["block1_conv1", "block2_conv1", "block3_conv1", "block4_conv1", "block5_conv1"] self.model_name = model_name self.verbose = verbose self.enable_gpu = enable_gpu self._set_device() tf.compat.v1.enable_eager_execution() self.path = IO() if(self.verbose == True): print ("Eager Execution: {}".format(tf.executing_eagerly()))
parser.add_argument('--MUTPB', type=float, default=0.1) parser.add_argument('--gain_max', type=float, default=2.0) parser.add_argument('--speed_max', type=float, default=2.0) args = parser.parse_args() env_name = args.env_name env = gym.make(env_name) log_name = 'PSO4_open' # Set the logging variables # This also creates a new log file # Create log files log_dir = configure_log_dir(env_name, txt=log_name, No_time=False) logging_output(log_dir) logger = LoggerCsv(log_dir, csvname='log_results') results_IO = IO(os.path.join(log_dir, 'results.pkl')) args_IO = IO(os.path.join(log_dir, 'args.pkl')).to_pickle(args) def parmeter_generate(pmin, pmax): parm_list = [random.uniform(pmin, pmax) for _ in range(27)] return parm_list def generate(size, pmin, pmax, smin, smax): part = creator.Particle(parmeter_generate(pmin, pmax)) part.speed = [random.uniform(smin, smax) for _ in range(size)] part.smin = smin part.smax = smax return part
particles_num = 22 elif task_mode == '5_sin': from CPG_core.butterfly_osc.butterfly_oscillator_5_sin import oscillator_nw particles_num = 29 else: raise print('task mode does not exist') else: raise print("env :{} task does not implemented.".format(env_name)) results_dir = os.path.join(results_path, 'results') monitor_dir = os.path.join(results_dir, 'monitor') results = IO(os.path.join(results_path, 'results.pkl')).read_pickle() #plot # gen = len(results) # fitness =[] # for g in range (1, gen+1): # fitness.append(results['gen{}'.format(g)]['best_fitness']) # # fitness =np.array(fitness) # gen_x = np.linspace(1,30,30) # plt.plot(gen_x, fitness) # plt.show() # # if not os.path.isdir(results_dir): # os.makedirs(results_dir) # create path # if not os.path.isdir(monitor_dir):
def __init__(self, model_name, verbose): self.model_name = model_name self.verbose = verbose self.path = IO()