def train_R2D(): # set options opt = Option() opt.root_dir = root + '/dataset/R2D' opt.checkpoints_dir = root + '/checkpoints/R2D' opt.gpu_ids = [0] opt.batch_size = 16 opt.coarse = False opt.pool_size = 0 opt.no_lsgan = True # load data root_dir_train = opt.root_dir + '/train' dataset_train = R2DDataLoader(root_dir=root_dir_train, train=True, coarse=opt.coarse) data_loader_train = DataLoader(dataset_train, batch_size=opt.batch_size, shuffle=opt.shuffle, num_workers=opt.num_workers, pin_memory=opt.pin_memory) # load model model = R2DModel() model.initialize(opt) #model.load_networks(-1) # do training for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1): file = open(opt.root_dir + '/logs.txt', 'a') for idx_batch, data_batch in enumerate(data_loader_train): print(idx_batch) model.set_input(data_batch) model.optimize_parameters() print('epoch: ' + str(epoch) + ', train loss_G_Loss1: ' + str(model.loss_G_Loss1.data) + ', train loss_G_Loss2: ' + str(model.loss_G_Loss2.data)) file.write('epoch: ' + str(epoch) + ', train loss_G_Loss1: ' + str(model.loss_G_Loss1.data) + ', train loss_G_Loss2: ' + str(model.loss_G_Loss2.data) + '\n') file.close() # save if epoch % 5 == 0: model.save_networks(epoch)
def test_R2D(): # set options opt = Option() opt.root_dir = root + '/dataset/R2D' opt.checkpoints_dir = root + '/checkpoints/R2D' opt.gpu_ids = [0] opt.batch_size = 16 opt.coarse = False opt.pool_size = 0 opt.no_lsgan = True # load data root_dir_test = opt.root_dir + '/test' dataset_test = R2DDataLoader(root_dir=root_dir_test, train=True, coarse=opt.coarse) data_loader_test = DataLoader(dataset_test, batch_size=opt.batch_size, shuffle=opt.shuffle, num_workers=opt.num_workers, pin_memory=opt.pin_memory) # load model model = R2DModel() model.initialize(opt) model.load_networks(-1) # do testung for idx_batch, data_batch in enumerate(data_loader_test): print(idx_batch) model.set_input(data_batch) model.forward() fake_L = model.fake_L.detach().cpu() fake_D = model.fake_D.detach().cpu() n, c, h, w = fake_L.size() for i in range(0, n): label = fake_L[i, :, :, :] * 0.5 + 0.5 depth = fake_D[i, :, :, :] * 0.5 + 0.5 img_id = data_batch['img_id'][i] # save image path_depth = 'F:/' + img_id + '_pred_depth.png' path_label = 'F:/' + img_id + '_label.png' #torchvision.utils.save_image(depth.float(), path_depth) torchvision.utils.save_image(label.float(), path_label) torchvision.utils.save_image(depth.float(), path_depth)
def __init__(self, root_dir, img_id, train=True, transform=None): """ Args: :param root_dir (string): Directory with all the images :param img_id (list): lists of image id :param train: if equals true, then read training set, so the output is image, mask and imgId if equals false, then read testing set, so the output is image and imgId :param transform (callable, optional): Optional transform to be applied on a sample """ self.root_dir = root_dir self.img_id = img_id self.train = train self.transform = transform self.opt = Option()
train=False, transform=transforms.Compose([ # RandomCrop(256), Rescale(256, train=False), ToTensor(train=False) ])) testloader = DataLoader(transformed_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=pin_memory) return testloader if __name__ == '__main__': opt = Option() trainloader, val_loader = get_train_valid_loader( opt.root_dir, batch_size=opt.batch_size, split=True, shuffle=opt.shuffle, num_workers=opt.num_workers, val_ratio=0.1, pin_memory=opt.pin_memory) for i_batch, sample_batched in enumerate(val_loader): print(i_batch, sample_batched['image'].size(), sample_batched['mask'].size()) show_batch(sample_batched) plt.show()
import tensorflow as tf import numpy as np import time import argparse import model import math import utils import data import csv from utils import Option opt = Option('./config.json') utils.init() formatter = argparse.ArgumentDefaultsHelpFormatter parser = argparse.ArgumentParser(formatter_class=formatter) args, flags = utils.parse_args(opt, parser) tf.compat.v1.random.set_random_seed(args['random_seed']) def rampup(epoch): if epoch < args['rampup_length']: p = max(0.0, float(epoch)) / float(args['rampup_length']) p = 1.0 - p return math.exp(-p * p * 5.0) else: return 1.0 def rampup_ratio(epoch):
def main(): parser = argparse.ArgumentParser(description="Experiment setup") # misc parser.add_argument('--seed', default=33, type=int) parser.add_argument('--gpu', default="3", type=str) parser.add_argument('--no_train', default=False, action="store_true") parser.add_argument('--exps_dir', default=None, type=str) parser.add_argument('--exp_name', default=None, type=str) parser.add_argument('--load', default=None, type=str) # data property parser.add_argument('--data_path', default='data/quora/quora.txt', type=str) parser.add_argument('--dict_path', default='data/quora/dict.pkl', type=str) parser.add_argument('--dict_size', default=30000, type=int) parser.add_argument('--vocab_size', default=30003, type=int) parser.add_argument('--backward', default=False, action="store_true") parser.add_argument('--keyword_pos', default=True, action="store_false") # model architecture parser.add_argument('--num_steps', default=15, type=int) parser.add_argument('--num_layers', default=2, type=int) parser.add_argument('--emb_size', default=300, type=int) parser.add_argument('--hidden_size', default=300, type=int) parser.add_argument('--dropout', default=0.0, type=float) parser.add_argument('--model', default=0, type=int) # optimization parser.add_argument('--batch_size', default=128, type=int) parser.add_argument('--epochs', default=200, type=int) parser.add_argument('--learning_rate', default=0.001, type=float) parser.add_argument('--weight_decay', default=0.00, type=float) parser.add_argument('--clip_norm', default=5, type=float) parser.add_argument('--no_cuda', default=False, action="store_true") parser.add_argument('--pretrain', default=False, action="store_true") parser.add_argument('--threshold', default=0.1, type=float) # evaluation parser.add_argument('--sim', default='word_max', type=str) parser.add_argument('--mode', default='sa', type=str) parser.add_argument('--accuracy', default=False, action="store_true") parser.add_argument('--top_k', default=10, type=int) parser.add_argument('--accumulate_step', default=1, type=int) parser.add_argument('--backward_path', default=None, type=str) parser.add_argument('--forward_path', default=None, type=str) # sampling parser.add_argument('--mcmc', default='sa', type=str) parser.add_argument('--use_data_path', default='data/input/input.txt', type=str) parser.add_argument('--reference_path', default=None, type=str) parser.add_argument('--pos_path', default='POS/english-models', type=str) parser.add_argument('--emb_path', default='data/quora/emb.pkl', type=str) parser.add_argument('--max_key', default=3, type=float) parser.add_argument('--max_key_rate', default=0.5, type=float) parser.add_argument('--rare_since', default=30000, type=int) parser.add_argument('--sample_time', default=100, type=int) parser.add_argument('--search_size', default=100, type=int) parser.add_argument('--action_prob', default=[0.3, 0.3, 0.3, 0.3], type=list) parser.add_argument('--just_acc_rate', default=0.0, type=float) parser.add_argument('--sim_mode', default='keyword', type=str) parser.add_argument('--save_path', default='temp.txt', type=str) parser.add_argument('--forward_save_path', default='data/tfmodel/forward.ckpt', type=str) parser.add_argument('--backward_save_path', default='data/tfmodel/backward.ckpt', type=str) parser.add_argument('--max_grad_norm', default=5, type=float) parser.add_argument('--keep_prob', default=1, type=float) parser.add_argument('--N_repeat', default=1, type=int) parser.add_argument('--C', default=0.05, type=float) parser.add_argument('--M_kw', default=1, type=float) parser.add_argument('--M_bleu', default=1, type=float) d = vars(parser.parse_args()) option = Option(d) random.seed(option.seed) np.random.seed(option.seed) torch.manual_seed(option.seed) os.environ["CUDA_VISIBLE_DEVICES"] = option.gpu if option.exp_name is None: option.tag = time.strftime("%y-%m-%d-%H-%M") else: option.tag = option.exp_name if option.accuracy: assert option.top_k == 1 dataclass = data.Data(option) print("Data prepared.") option.this_expsdir = os.path.join(option.exps_dir, option.tag) if not os.path.exists(option.this_expsdir): os.makedirs(option.this_expsdir) option.ckpt_dir = os.path.join(option.this_expsdir, "ckpt") if not os.path.exists(option.ckpt_dir): os.makedirs(option.ckpt_dir) option.model_path = os.path.join(option.ckpt_dir, "model") option.save() print("Option saved.") device = torch.device( "cuda" if torch.cuda.is_available() and not option.no_cuda else "cpu") n_gpu = torch.cuda.device_count() if option.model == 0: learner = RNNModel(option) elif option.model == 1: learner = PredictingModel(option) learner.to(device) if option.load is not None: with open(option.load, 'rb') as f: learner.load_state_dict(torch.load(f)) if not option.no_train: experiment = Experiment(option, learner=learner, data=dataclass) print("Experiment created.") if option.pretrain: experiment.init_embedding(option.emb_path) print("Start training...") experiment.train() else: forwardmodel = RNNModel(option).cuda() if option.mcmc == 'predicting': backwardmodel = PredictingModel(option).cuda() else: backwardmodel = RNNModel(option).cuda() if option.forward_path is not None: with open(option.forward_path, 'rb') as f: forwardmodel.load_state_dict(torch.load(f)) if option.backward_path is not None: with open(option.backward_path, 'rb') as f: backwardmodel.load_state_dict(torch.load(f)) forwardmodel.eval() backwardmodel.eval() simulatedAnnealing_batch(option, dataclass, forwardmodel, backwardmodel) print("=" * 36 + "Finish" + "=" * 36)
def main(): parser = argparse.ArgumentParser(description="Experiment setup") # misc parser.add_argument('--seed', default=33, type=int) parser.add_argument('--gpu', default="3", type=str) parser.add_argument('--no_train', default=False, action="store_true") parser.add_argument('--exps_dir', default=None, type=str) parser.add_argument('--exp_name', default=None, type=str) parser.add_argument('--load', default=None, type=str) # data property parser.add_argument('--data_path', default='data/quora/quora.txt', type=str) parser.add_argument('--dict_path', default='data/quora/dict.pkl', type=str) parser.add_argument('--dict_size', default=30000, type=int) parser.add_argument('--vocab_size', default=30003, type=int) parser.add_argument('--backward', default=False, action="store_true") parser.add_argument('--keyword_pos', default=True, action="store_false") # model architecture parser.add_argument('--num_steps', default=15, type=int) parser.add_argument('--num_layers', default=2, type=int) parser.add_argument('--emb_size', default=256, type=int) parser.add_argument('--hidden_size', default=300, type=int) parser.add_argument('--dropout', default=0.0, type=float) parser.add_argument('--model', default=0, type=int) # optimization parser.add_argument('--batch_size', default=1, type=int) parser.add_argument('--epochs', default=200, type=int) parser.add_argument('--learning_rate', default=0.001, type=float) parser.add_argument('--weight_decay', default=0.00, type=float) parser.add_argument('--clip_norm', default=0.00, type=float) parser.add_argument('--no_cuda', default=False, action="store_true") parser.add_argument('--local', default=False, action="store_true") parser.add_argument('--threshold', default=0.1, type=float) # evaluation parser.add_argument('--sim', default='word_max', type=str) parser.add_argument('--mode', default='kw-bleu', type=str) parser.add_argument('--accuracy', default=False, action="store_true") parser.add_argument('--top_k', default=10, type=int) parser.add_argument('--accumulate_step', default=1, type=int) parser.add_argument('--backward_path', default=None, type=str) parser.add_argument('--forward_path', default=None, type=str) # sampling parser.add_argument('--use_data_path', default='data/input/input.txt', type=str) parser.add_argument('--reference_path', default=None, type=str) parser.add_argument('--pos_path', default='POS/english-models', type=str) parser.add_argument('--emb_path', default='data/quora/emb.pkl', type=str) parser.add_argument('--max_key', default=3, type=float) parser.add_argument('--max_key_rate', default=0.5, type=float) parser.add_argument('--rare_since', default=30000, type=int) parser.add_argument('--sample_time', default=100, type=int) parser.add_argument('--search_size', default=50, type=int) parser.add_argument('--action_prob', default=[0.3, 0.3, 0.3, 0.3], type=list) parser.add_argument('--just_acc_rate', default=0.0, type=float) parser.add_argument('--sim_mode', default='keyword', type=str) parser.add_argument('--save_path', default='temp.txt', type=str) parser.add_argument('--forward_save_path', default='data/tfmodel/forward.ckpt', type=str) parser.add_argument('--backward_save_path', default='data/tfmodel/backward.ckpt', type=str) parser.add_argument('--max_grad_norm', default=5, type=float) parser.add_argument('--keep_prob', default=1, type=float) parser.add_argument('--N_repeat', default=1, type=int) parser.add_argument('--C', default=0.03, type=float) parser.add_argument('--M_kw', default=7, type=float) parser.add_argument('--M_bleu', default=1, type=float) d = vars(parser.parse_args()) option = Option(d) random.seed(option.seed) np.random.seed(option.seed) os.environ["CUDA_VISIBLE_DEVICES"] = option.gpu config = option if option.exp_name is None: option.tag = time.strftime("%y-%m-%d-%H-%M") else: option.tag = option.exp_name option.this_expsdir = os.path.join(option.exps_dir, option.tag) if not os.path.exists(option.this_expsdir): os.makedirs(option.this_expsdir) option.save() if option.batch_size == 1: simulatedAnnealing(option) else: simulatedAnnealing_batch(option) print("=" * 36 + "Finish" + "=" * 36)
datas = [] for k in tqdm(dubl_inds.items()): c1 = colgate.loc[k[0]] p1 = colgate.loc[k[1]] T = c1.EXPIRY_DT - c1.TIMESTAMP T = T.days T /= 356 tres = treasury[treasury['Date'] == c1.TIMESTAMP] # print(tres) price = tres['CloseCOL'].values[0] # print(pricel) rf = tres['Close'] opt = Option(strike_price=c1.STRIKE_PR, call_price=c1.SETTLE_PR, put_price=p1.SETTLE_PR, asset_price=price, rf_rate=rf.values[0] / 100, T=T) try: moneyness = opt.logforward_moneyness() vol = opt.implied_volatility() datas.append([moneyness, T, vol]) except ZeroDivisionError: continue datas = np.array(datas) datas = pd.DataFrame(datas, columns=['m', 't', 'v']) datas.to_csv("OUTPUT_PATH", index=False)
if __name__ == "__main__": s = 36. #spot price sigma = 0.2 #volatility T = 1. #time to expiry k = 40. #strike price r = 0.06 #deterministic short term interest rate opt_type = 'PUT' n = 100 #number of simulations m = int(T * 50) #number of exercise points (default 50 per year in OG article) conf = 0.95 # confidence level for estimation # Test LSMC Algorithm opt = Option(opt_type, s, k, T, sigma, r) opt.valuation(n, m) #opt.display(True) n = 100000 m = 50 timeSteps = np.arange(1, m + 1, 1) fieldNames = ['S', 'K', 'sig', 'r', 'T', 'm', 'n', 'price', 'std'] numSample = 100000 with open('results.csv', 'wb') as csvfile: resWriter = csv.writer(csvfile, delimiter=',', quoting=csv.QUOTE_MINIMAL) resWriter.writerow(fieldNames + [str(t) for t in timeSteps]) for i in range(0, numSample):
#import matplotlib.pyplot as plt import time import cv2 from os import listdir from os.path import isfile, join import re from model import R2DModel, D2LModel, L2RModel, DLRModel, RDLRModel, DLLModel, L2RAllModel, L2RNoiseModel from utils import Option from dataset import R2DDataLoader, D2LDataLoader, L2RDataLoader, DLRDataLoader, RDLRDataLoader, DLLDataLoader, L2RAllDataLoader from geo_process_layer import depth2voxel, voxel2pano import socket opt = Option() host_name = socket.gethostname() if host_name == 'cnb-d102-04a': root = '/local/zoli/xiaohu_iccv2019' noise_b = False opt.batch_size = 4 opt.use_multiple_G = True elif host_name == 'cvg-desktop-17-ubuntu': root = '/home/zoli/xiaohu_iccv2019' noise_b = True opt.batch_size = 1 opt.use_multiple_G = False else: raise ValueError('Root Error!')
self.debug (1, "b: %d, a:%d, f: %d" % fsstat) blocks+= fsstat[0] free+= fsstat[1] files+= fsstat[2] except: # don't count it pass ffree= consts.maxIno-files # f_blocks, f_bfree, f_bavail, f_files, f_ffree, f_namemax self.log ("sftats!") return (consts.fragmentSize, blocks, free, consts.maxIno, ffree, 255) if __name__ == '__main__': (opts, args)= parseOpts ([ Option ('b', 'broadcast-to', True, default=''), Option ('c', 'connect-to', True), Option ('l', 'log-file', True, default='virtue.log'), ], argv[1:]) debugPrint (1, 'parsed args: %s, left args: %s' % ( ", ".join ( map ( lambda x: "%s: %s" % (x, opts[x].value), opts.keys () )) , args)) net= opts['b'].asString () url= opts['c'].asString () server= Virtue (url, net, fileName=opts['l'].asString ())
def main(): parser = argparse.ArgumentParser(description="Experiment setup") # misc parser.add_argument("--seed", default=33, type=int) parser.add_argument("--gpu", default="0", type=str) parser.add_argument("--no_train", default=False, action="store_true") parser.add_argument("--exps_dir", default=None, type=str) parser.add_argument("--exp_name", default=None, type=str) parser.add_argument("--load", default=None, type=str) # data property parser.add_argument("--data_path", default="data/quoradata/test.txt", type=str) parser.add_argument("--dict_path", default="data/quoradata/dict.pkl", type=str) parser.add_argument("--dict_size", default=30000, type=int) parser.add_argument("--vocab_size", default=30003, type=int) parser.add_argument("--backward", default=False, action="store_true") parser.add_argument("--keyword_pos", default=True, action="store_false") # model architecture parser.add_argument("--num_steps", default=15, type=int) parser.add_argument("--num_layers", default=2, type=int) parser.add_argument("--emb_size", default=256, type=int) parser.add_argument("--hidden_size", default=300, type=int) parser.add_argument("--dropout", default=0.0, type=float) parser.add_argument("--model", default=0, type=int) # optimization parser.add_argument("--batch_size", default=1, type=int) parser.add_argument("--epochs", default=200, type=int) parser.add_argument("--learning_rate", default=0.001, type=float) parser.add_argument("--weight_decay", default=0.00, type=float) parser.add_argument("--clip_norm", default=0.00, type=float) parser.add_argument("--no_cuda", default=False, action="store_true") parser.add_argument("--local", default=False, action="store_true") parser.add_argument("--threshold", default=0.1, type=float) # evaluation parser.add_argument("--sim", default="word_max", type=str) parser.add_argument("--mode", default="sa", type=str) parser.add_argument("--accuracy", default=False, action="store_true") parser.add_argument("--top_k", default=10, type=int) parser.add_argument("--accumulate_step", default=1, type=int) parser.add_argument("--backward_path", default=None, type=str) parser.add_argument("--forward_path", default=None, type=str) # sampling parser.add_argument("--use_data_path", default="data/quoradata/test.txt", type=str) parser.add_argument("--reference_path", default=None, type=str) parser.add_argument("--pos_path", default="POS/english-models", type=str) parser.add_argument("--emb_path", default="data/quoradata/emb.pkl", type=str) parser.add_argument("--max_key", default=3, type=float) parser.add_argument("--max_key_rate", default=0.5, type=float) parser.add_argument("--rare_since", default=30000, type=int) parser.add_argument("--sample_time", default=100, type=int) parser.add_argument("--search_size", default=100, type=int) parser.add_argument("--action_prob", default=[0.3, 0.3, 0.3, 0.3], type=list) parser.add_argument("--just_acc_rate", default=0.0, type=float) parser.add_argument("--sim_mode", default="keyword", type=str) parser.add_argument("--save_path", default="temp.txt", type=str) parser.add_argument("--forward_save_path", default="data/tfmodel/forward.ckpt", type=str) parser.add_argument("--backward_save_path", default="data/tfmodel/backward.ckpt", type=str) parser.add_argument("--max_grad_norm", default=5, type=float) parser.add_argument("--keep_prob", default=1, type=float) parser.add_argument("--N_repeat", default=1, type=int) parser.add_argument("--C", default=0.03, type=float) parser.add_argument("--M_kw", default=8, type=float) parser.add_argument("--M_bleu", default=1, type=float) # Samples to work on # This lets us run multiple instances on separate parts of the data # for added parallelism parser.add_argument("--data_start", default=0, type=int) parser.add_argument("--data_end", default=-1, type=int) parser.add_argument("--alg", default="sa", type=str) parser.add_argument("--use_val_function", default=False, action="store_true") parser.add_argument("--exploration_constant", default=1.44, type=float) d = vars(parser.parse_args()) option = Option(d) random.seed(option.seed) np.random.seed(option.seed) os.environ["CUDA_VISIBLE_DEVICES"] = option.gpu config = option if option.exp_name is None: option.tag = time.strftime("%y-%m-%d-%H-%M") else: option.tag = option.exp_name option.this_expsdir = os.path.join(option.exps_dir, option.tag) if not os.path.exists(option.this_expsdir): os.makedirs(option.this_expsdir) if not os.path.exists("logs/{}".format(option.exp_name)): os.makedirs("logs/{}".format(option.exp_name)) logger = logging.getLogger() fhandler = logging.FileHandler(filename="logs/{}/{}.log".format( option.exp_name, option.save_path[:-4])) formatter = logging.Formatter( "%(asctime)s [%(levelname)-5.5s] %(message)s") fhandler.setFormatter(formatter) logger.addHandler(fhandler) logger.setLevel(logging.DEBUG) if option.alg.lower() == "sa": simulatedAnnealing(option) elif option.alg.lower() == "mcts": runMCTS(option) else: raise ValueError("Unknown algorithm option") print("=" * 36 + "Finish" + "=" * 36)
def train(): parser = argparse.ArgumentParser() parser.add_argument("--data", type=str, default='../data/', help="all data dir") parser.add_argument("--dataset", type=str, default='bace', help="muv,tox21,toxcast,sider,clintox,hiv,bace,bbbp") parser.add_argument('--seed', default=68, type=int) parser.add_argument("--gpu", type=int, nargs='+', default=0, help="CUDA device ids") parser.add_argument("--hid", type=int, default=32, help="hidden size of transformer model") parser.add_argument('--heads', default=4, type=int) parser.add_argument('--depth', default=3, type=int) parser.add_argument("--dropout", type=float, default=0.2) parser.add_argument("--batch_size", type=int, default=128, help="number of batch_size") parser.add_argument("--epochs", type=int, default=200, help="number of epochs") parser.add_argument("--lr", type=float, default=0.001, help="learning rate of adam") parser.add_argument("--weight_decay", type=float, default=1e-5) parser.add_argument('--lr_scheduler_patience', default=10, type=int) parser.add_argument('--early_stop_patience', default=-1, type=int) parser.add_argument('--lr_decay', default=0.98, type=float) parser.add_argument('--focalloss', default=False, action="store_true") parser.add_argument('--eval', default=False, action="store_true") parser.add_argument("--exps_dir", default='../test', type=str, help="out dir") parser.add_argument('--exp_name', default=None, type=str) d = vars(parser.parse_args()) args = Option(d) seed_set(args.seed) args.parallel = True if args.gpu and len(args.gpu) > 1 else False args.parallel_devices = args.gpu args.tag = time.strftime( "%m-%d-%H-%M") if args.exp_name is None else args.exp_name args.exp_path = os.path.join(args.exps_dir, args.tag) if not os.path.exists(args.exp_path): os.makedirs(args.exp_path) args.code_file_path = os.path.abspath(__file__) if args.dataset == 'muv': args.tasks = [ "MUV-466", "MUV-548", "MUV-600", "MUV-644", "MUV-652", "MUV-689", "MUV-692", "MUV-712", "MUV-713", "MUV-733", "MUV-737", "MUV-810", "MUV-832", "MUV-846", "MUV-852", "MUV-858", "MUV-859" ] args.out_dim = 2 * len(args.tasks) train_dataset, valid_dataset, test_dataset = load_dataset_random_nan( args.data, args.dataset, args.seed, args.tasks) elif args.dataset == 'tox21': args.tasks = [ 'NR-AR', 'NR-AR-LBD', 'NR-AhR', 'NR-Aromatase', 'NR-ER', 'NR-ER-LBD', 'NR-PPAR-gamma', 'SR-ARE', 'SR-ATAD5', 'SR-HSE', 'SR-MMP', 'SR-p53' ] args.out_dim = 2 * len(args.tasks) train_dataset, valid_dataset, test_dataset = load_dataset_random( args.data, args.dataset, args.seed, args.tasks) elif args.dataset == 'toxcast': args.tasks = toxcast_tasks args.out_dim = 2 * len(args.tasks) train_dataset, valid_dataset, test_dataset = load_dataset_random_nan( args.data, args.dataset, args.seed, args.tasks) elif args.dataset == 'sider': args.tasks = [ 'SIDER1', 'SIDER2', 'SIDER3', 'SIDER4', 'SIDER5', 'SIDER6', 'SIDER7', 'SIDER8', 'SIDER9', 'SIDER10', 'SIDER11', 'SIDER12', 'SIDER13', 'SIDER14', 'SIDER15', 'SIDER16', 'SIDER17', 'SIDER18', 'SIDER19', 'SIDER20', 'SIDER21', 'SIDER22', 'SIDER23', 'SIDER24', 'SIDER25', 'SIDER26', 'SIDER27' ] args.out_dim = 2 * len(args.tasks) train_dataset, valid_dataset, test_dataset = load_dataset_random( args.data, args.dataset, args.seed, args.tasks) elif args.dataset == 'clintox': args.tasks = ['FDA_APPROVED'] args.out_dim = 2 * len(args.tasks) train_dataset, valid_dataset, test_dataset = load_dataset_random( args.data, args.dataset, args.seed, args.tasks) elif args.dataset == 'hiv': args.tasks = ['HIV_active'] train_dataset, valid_dataset, test_dataset = load_dataset_scaffold( args.data, args.dataset, args.seed, args.tasks) args.out_dim = 2 * len(args.tasks) elif args.dataset == 'bace': args.tasks = ['Class'] train_dataset, valid_dataset, test_dataset = load_dataset_scaffold( args.data, args.dataset, args.seed, args.tasks) args.out_dim = 2 * len(args.tasks) elif args.dataset == 'bbbp': args.tasks = ['BBBP'] train_dataset, valid_dataset, test_dataset = load_dataset_scaffold( args.data, args.dataset, args.seed, args.tasks) args.out_dim = 2 * len(args.tasks) else: # Unknown dataset error raise Exception( 'Unknown dataset, please enter the correct --dataset option') args.in_dim = train_dataset.num_node_features args.edge_in_dim = train_dataset.num_edge_features weight = train_dataset.weights option = args.__dict__ if not args.eval: model = Model(args.in_dim, args.edge_in_dim, hidden_dim=args.hid, depth=args.depth, heads=args.heads, dropout=args.dropout, outdim=args.out_dim) trainer = Trainer(option, model, train_dataset, valid_dataset, test_dataset, weight=weight, tasks_num=len(args.tasks)) trainer.train() print('Testing...') trainer.load_best_ckpt() trainer.valid_iterations(mode='eval') else: ckpt = torch.load(args.load) option = ckpt['option'] model = Model(option['in_dim'], option['edge_in_dim'], hidden_dim=option['hid'], depth=option['depth'], heads=option['heads'], dropout=option['dropout'], outdim=option['out_dim']) if not os.path.exists(option['exp_path']): os.makedirs(option['exp_path']) model.load_state_dict(ckpt['model_state_dict']) model.eval() trainer = Trainer(option, model, train_dataset, valid_dataset, test_dataset, weight=weight, tasks_num=len(args.tasks)) trainer.valid_iterations(mode='eval')
help="Number of iterations before saving the model", default=250) parser.add_argument("--cuda", type=str, help="cuda", default='1') args = parser.parse_args() print(args) import os #os.environ['TENSORFLOW_FLAGS']=os.environ.get('TENSORFLOW_FLAGS','')+',gpuarray.preallocate=0.45,device=cuda{}'.format(args.cuda) #os.environ['CUDA_VISIBLE_DEVICES']='{}'.format(args.cuda) from utils import ImageGenerator from models import CycleGAN from utils import Option if __name__ == '__main__': opt = Option() opt.batch_size = 1 opt.save_iter = args.save_iter opt.niter = args.niter opt.lmbd = args.lmbd opt.pic_dir = args.pic_dir opt.idloss = 0.0 opt.lr = 0.0002 opt.d_iter = 1 if args.lmbd_feat != 0: opt.perceptionloss = True else: opt.perceptionloss = False opt.lmbd_feat = args.lmbd_feat opt.__dict__.update(args.__dict__)
def test_RDLR(): t = '5' # set options opt = Option() opt.root_dir = 'D:/permanent/aligned_2k/test_augment/test_' + t opt.checkpoints_dir = 'C:/Users/lu.2037/Downloads/ICCV2019/checkpoints/RDLR' root_result = 'D:/permanent/aligned_2k/test_augment/test_' + t opt.gpu_ids = [0] opt.batch_size = 4 opt.coarse = False opt.pool_size = 0 opt.no_lsgan = True opt.is_train = False # load data root_dir_train = opt.root_dir dataset_train = RDLRDataLoader(root_dir=root_dir_train, train=False, coarse=opt.coarse) data_loader_test = DataLoader(dataset_train, batch_size=opt.batch_size, shuffle=opt.shuffle, num_workers=opt.num_workers, pin_memory=opt.pin_memory) # load model model = RDLRModel() model.initialize(opt) model.load_networks(-1) # do testung for idx_batch, data_batch in enumerate(data_loader_test): print(idx_batch) model.set_input(data_batch, 0) model.forward() fake_R = model.fake_street_R.detach().cpu() fake_L = model.fake_street_L.detach().cpu() fake_sate_D = model.fake_sate_D.detach().cpu() fake_sate_L = model.fake_sate_L.detach().cpu() fake_proj_dis = model.proj_D.detach().cpu() n, c, h, w = fake_R.size() for i in range(0, n): rgb = fake_R[i, :, :, :] * 0.5 + 0.5 label = fake_L[i, :, :, :] * 0.5 + 0.5 sate_depth = fake_sate_D[i, :, :, :] * 0.5 + 0.5 sate_label = fake_sate_L[i, :, :, :] * 0.5 + 0.5 proj_depth = fake_proj_dis[i, :, :, :] * 0.5 + 0.5 img_id = data_batch['img_id'][i] # save image tt = "_0" + t path_depth = root_result + '/' + img_id + '_pred_depth' + tt + '.png' path_sate_label = root_result + '/' + img_id + '_pred_label' + tt + '.png' path_rgb = root_result + '/' + img_id + '_pred_rgb' + tt + '.png' path_label = root_result + '/' + img_id + '_pred_sem' + tt + '.png' path_proj_dis = root_result + '/' + img_id + '_proj_dis' + tt + '.png' torchvision.utils.save_image(sate_depth.float(), path_depth) # torchvision.utils.save_image(sate_label.float(), path_sate_label) torchvision.utils.save_image(rgb.float(), path_rgb) torchvision.utils.save_image(label.float(), path_label) torchvision.utils.save_image(proj_depth.float(), path_proj_dis)
def test_D2L(): # set options opt = Option() opt.root_dir = root + '/dataset/test' opt.checkpoints_dir = root + '/checkpoints/D2L' opt.result_dir = opt.root_dir opt.gpu_ids = [0] opt.batch_size = 16 opt.coarse = False opt.pool_size = 0 opt.no_lsgan = True opt.is_train = False opt.fine_tune_sidewalk = False # load data root_dir_train = opt.root_dir dataset_train = D2LDataLoader(root_dir=root_dir_train, train=opt.is_train, coarse=opt.coarse, fine_tune_sidewalk=opt.fine_tune_sidewalk) data_loader_test = DataLoader(dataset_train, batch_size=opt.batch_size, shuffle=opt.shuffle, num_workers=opt.num_workers, pin_memory=opt.pin_memory) # load model model = D2LModel() model.initialize(opt) model.load_networks(50) # do testung for idx_batch, data_batch in enumerate(data_loader_test): print(idx_batch) model.set_input(data_batch, 0) model.forward() fake_S = model.fake_S.detach().cpu() n, c, h, w = fake_S.size() for i in range(0, n): sem = fake_S[i, :, :, :] * 0.5 + 0.5 img_id = data_batch['img_id'][i] # save image path_sem = root_dir_train + '/' + img_id + '_pred_sem_wo_mask.png' #torchvision.utils.save_image(depth.float(), path_depth) torchvision.utils.save_image(sem.float(), path_sem)
parser.add_argument('--max_grad_norm', default=5, type=float) parser.add_argument('--keep_prob', default=1, type=float) parser.add_argument('--N_repeat', default=1, type=int) parser.add_argument('--C', default=0.03, type=float) parser.add_argument('--M_kw', default=8, type=float) parser.add_argument('--M_bleu', default=1, type=float) # Samples to work on # This lets us run multiple instances on separate parts of the data # for added parallelism parser.add_argument('--data_start', default=0, type=int) parser.add_argument('--data_end', default=-1, type=int) parser.add_argument('--alg', default="sa", type=str) d = vars(parser.parse_args()) option = Option(d) logger = logging.getLogger() fhandler = logging.FileHandler( filename="logs/{}.log".format(option.save_path.split(".")[0])) formatter = logging.Formatter( "%(asctime)s [%(levelname)-5.5s] %(message)s") fhandler.setFormatter(formatter) logger.addHandler(fhandler) logger.setLevel(logging.DEBUG) random.seed(option.seed) np.random.seed(option.seed) os.environ["CUDA_VISIBLE_DEVICES"] = option.gpu config = option
import click import cv2 from utils import Option, Cropper if __name__ == '__main__': opt = Option() img_paths = opt.img_paths raw_img = cv2.imread(opt.get_first_one().absolute().as_posix()) cropper = Cropper(raw_img) if cropper.cropped: start, end = cropper.get_start_end() startx, starty = start endx, endy = end last_size = None for img_path in img_paths: img = cv2.imread(img_path.absolute().as_posix()) height, width, _ = img.shape size = (width, height) if last_size and last_size != size: